
296 Chapter 5 Linear Systems of Differential Equations

fresh water). Then the first equation should be replaced with x = kx — kjx1.

Now show that, in this closed system, as t — +00 the salt originally in tank 1

distributes itself with constant density throughout the various tanks. A plot like

Fig. 5.2.6 should make this fairly obvious.

AGallery of Solution Curves of Linear ystems

___

In the preceding section we saw that the eigenvalues and eigenvectors of the

n x n matrix A are of central importance to the solutions of the homogeneous linear

constant-coefficient system
x’=Ax. (1)

Indeed, according to Theorem 1 from Section 5.2, if ) is an eigenvalue of A and v

is an eigenvector of A associated with ), then

x(t) = veAt (2)

is a nontrivial solution of the system (1). Moreover, if A has n linearly independent

eigenvectors v1, v2 v associated with its n eigenvalues ), ) then in

fact all solutions of the system (1) are given by linear combinations

x(t) = civieAht +c2v2et + ... + cnvne?t, (3)

where c1, c2 c are arbitrary constants. If the eigenvalues include complex con

jugate pairs, then we can obtain a real-valued general solution from Eq. (3) by taking

real and imaginary parts of the terms in (3) corresponding to the complex eigenval

ues.
Our goal in this section is to gain a geometric understanding of the role that the

eigenvalues and eigenvectors of the matrix A play in the solutions of the system (1).

We will see, illustrating primarily with the case n = 2, that particular arrangements

of eigenvalues and eigenvectors correspond to identifiable patterns—”fingerprints,”

so to speak—in the phase plane portrait of the system (1). Just as in algebra we

learn to recognize when an equation in x and y corresponds to a line or parabola,

we can predict the general appearance of the solution curves of the system (1) from

the eigenvalues and eigenvectors of the matrix A. By considering various cases

for these eigenvalues and eigenvectors we will create a “gallery”— Figure 5.3.16

appearing at the end of this section—of typical phase plane portraits that gives,

in essence, a complete catalog of the geometric behaviors that the solutions of a

2 x 2 homogeneous linear constant-coefficient system can exhibit. This will help us

analyze not only systems of the form (1), but also more complicated systems that

can be approximated by linear systems, a topic we explore in Section 6.2.

Systems of Dimension n = 2

Until stated otherwise, we henceforth assume that mm = 2, so that the eigenvalues of

the matrix A are ) and )2. As we noted in Section 5.2, if and ?2 are distinct,

then the associated eigenvectors v1 and v2 of A are linearly independent. Ifl this

event, the general solution of the system (1) is given by

x(t) =c1v1e+c2v2e2t (4)

if A and )2 are real, and by

(5)
xQ) = ciet(acosqt —bsinqt) +c2e0t(bcosqt + asinqt)
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ifA1 and A2 are the complex conjugate numbers p ± iq; here the vectors a and b are
the real and imaginary parts, respectively, of a (complex-valued) eigenvector of A
associated with the eigenvalue p ± iq. If instead A and A2 are equal (to a common
value A, say), then as we will see in Section 5.5, the matrix A may or may not have
two linearly independent eigenvectors v1 and v2 . If it does, then the eigenvalue
method of Section 5.2 applies once again, and the general solution of the system (1)
is given by the linear combination

x(t) = clviet +c2v2eAt

as before. If A does not have two linearly independent eigenvectors, then—as we
will see—we can find a vector v2 such that the general solution of the system (1) is
given by

x(t) = cIviet +c2(vit +v2)et,

where v1 is an eigenvector of A associated with the lone eigenvalue A. The nature
of the vector v2 and other details of the general solution in (7) will be discussed in

nt Section 5.5, but we include this case here in order to make our gallery complete.
in With this algebraic background in place, we begin our analysis of the solution

curves of the system (1). First we assume that the eigenvalues A1 and A2 of the ma
trix A are real, and subsequently we take up the case where A1 and A2 are complex
conjugates.

Real Eigenvalues
We will divide the case where A1 and A2 are real into the following possibilities:
Distinct eigenvalues

• Nonzero and of opposite sign (A1 <0 < A2)
). • Both negative (A1 <A2 <0)

its • Both positive (0 <A2 <A1)
• One zero and one negative (A1 <A2 = 0)

ye • One zero and one positive (0 = A, <A1)
a, Repeated eigenvalue

• Positive (A1 = A2 > 0)

[6 • Negative (A1 = A2 <0)
• Zero (A1 = A2 = 0)

a
us Saddle Points
at

NONZERO DISTINCT EIGENVALUES OF OPPOSITE SIGN: The key observa
tion when A1 <0 < A2 is that the positive scalar factors eA and e- in the general
solution

xQ) = civie)ht +c2v2e2t
of

of the system x’ = Ax move in opposite directions (on the real line) as t varies. For
ii example, as t grows large and positive, eA2t grows large, because A2 > 0, whereas

e)1t approaches zero, because A1 < 0; thus the term clvle1t in the solution x(t)
in (4) vanishes and x(t) approachesc2v2eA2t. if instead t grows large and negative,
then the opposite occurs: The factor eA1t grows large whereas e2t becomes small,
and the solution x(t) approaches c1 v1 eA1t. If we assume for the moment that both ci
and c2 are nonzero, then loosely speaking, as t ranges from —oc to +oc, the solution
x(t) shifts from being “mostly” a multiple of the eigenvector v1 to being “mostly” a
multiple of v2.
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FIGURE 5.3.1. Solution curves
x(t) = civte1t +c2v2eA2t for the
system x’ = Ax when the eigenvalues
Ai, A2 of A are real with
A1 <0 <A2.

Example 1

Geometrically, this means that all solution curves given by (4) with both c1
and c2 nonzero have two asymptotes, namely the lines 1 and 12 passing through the
origin and parallel to the eigenvectors v1 and v2, respectively; the solution curves
approach 1 as t —* —oo and 12 as t —s. +00. Indeed, as Fig. 5.3.1 illustrates, the
lines 1 and 12 effectively divide the plane into four “quadrants” within which all
solution curves flow from the asymptote l to the asymptote l2 as t increases. (The
eigenvectors shown in Fig. 5.3.1—and in other figures—are scaled so as to have
equal length.) The particular quadrant in which a solution curve lies is determined
by the signs of the coefficients c1 and c2. If c1 and c2 are both positive, for example,
then the corresponding solution curve extends asymptotically in the direction of the
eigenvector v1 as t — —00, and asymptotically in the direction of v2 as t —+ oo.
If instead c1 > 0 but c2 < 0, then the corresponding solution curve still extends
asymptotically in the direction of v1 as t —÷ —00, but extends asymptotically in the
direction opposite v2 as t —* +00 (because the negative coefficient c2 causes the
vector c2v2 to point “backwards” from v2).

If c1 or c2 equals zero, then the solution curve remains confined to one of the
lines i and 12. For example, if c1 0 but c2 = 0, then the solution (4) becomes
xQ) = clvleIt, which means that the corresponding solution curve lies along the
line l. It approaches the origin as t —÷ +00, because A1 < 0, and recedes farther
and farther from the origin as t —t —00, either in the direction of v1 (if c1 > 0) or
the direction opposite v1 (if c1 < 0). Similarly, if c1 = 0 and c2 0, then because
A2 > 0, the solution curve flows along the line 12 away from the origin as t —* +00

and toward the origin as t —* —00.

Figure 5.3.1 illustrates typical solution curves corresponding to nonzero val
ues of the coefficients c1 and c2. Because the overall picture of the solution curves
is suggestive of the level curves of a saddle-shaped surface (like z = xy), we call
the origin a saddle point for the system x’ = Ax.

The solution curves in Fig. 5.3.1 correspond to the choice

A=[ 2] (8)

in the system x’ = Ax; as you can verify, the eigenvalues of A are A1 —2 and A2 5 (thus
A1 < 0 < A2), with associated eigenvectors

r...il ru
vi=[

6]
and v2=[1].

According to Eq. (4), the resulting general solution is

or, in scalar form,

x(t) ci []e2 + c2 [ ] e5,

xi(t) = —cie2t +c2eSt,

x2(t) 6cie21 +c2eSt,

(9)

Our gallery Fig. 5.3.16 at the end of this section shows a more complete set of solution curves,
together with a direction field, for the system x’ = Ax with A given by Eq. (8). (In Problem
29 we explore “Cartesian” equations for the solution curves (10) relative to the “axes” defined
by the lines 1 and 12, which form a natural frame of reference for the solution curves.) •

xl

(10)
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FIGURE 5.3.2. Solution curves
x(t) cjvie’ +c2v2e2t for the
system x’ = Ax when the eigenvalues
A1 A2 of A are real with
A1 <A2 <0.

L

Example 2

DISTINCT NEGATIVE EIGENVALUES: When )i <)2 <0, the factors e1t andet both decrease as t increases. Indeed, as t — +, both e1t and e2t approachzero, which means that the solution curve

x(t) = clvle1t +c2v2eA2t (4)
approaches the origin; likewise, as t — —00, both e)1t and eA2t grow without bound,and so the solution curve “goes off to infinity.” Moreover, differentiation of thesolution in (4) gives

x’Q) = c 1v1e+c22v,eA2t = e [ciivie12)t +c22v7] (11)

This shows that the tangent vector x’(t) to the solution curve x(t) is a scalar multiple of the vector cl)Livie()I2)t +c2)2v2,which approaches the fixed nonzeromultiplec2A2v2of the vector v2 as t —+ +00 (because e(A1 2)t approaches zero). Itfollows that if c2 0, then as t — +00 , the solution curve xQ) becomes more andmore nearly parallel to the eigenvector v2 . (More specifically, note that if c2 > 0,for example, then x(t) approaches the origin in the direction opposite to v2, becausethe scalar c2)2 is negative.) Thus, if c2 0 , then with increasing t the solutioncurve approaches the origin and is tangent there to the line 12 passing through theorigin and parallel to v2.
If c2 = 0, on the other hand, then the solution curve x(t) flows similarly alongthe line l passing through the origin and parallel to the eigenvector v1. Once again,the net effect is that the lines l and 12 divide the plane into four “quadrants” asshown in Figure 5.3.2, which illustrates typical solution curves corresponding tononzero values of the coefficients C and c2.

To describe the appearance of phase portraits like Fig. 5.3.2, we introduce
some new terminology, which will be useful both now and in Chapter 6, when westudy nonlinear systems. In general, we call the origin a node of the system x’ = Axprovided that both of the following conditions are satisfied:

• Either every trajectory approaches the origin as t — +00 or every trajectory
recedes from the origin as t — +00;

• Every trajectory is tangent at the origin to some straight line through the ori
gin.

Moreover, we say that the origin is a proper node provided that no two differentpairs of “opposite” trajectories are tangent to the same straight line through the
origin. This is the situation in Fig. 5.3.6, in which the trajectories are straight lines,
not merely tangent to straight lines; indeed, a proper node might be called a “star
point.” However, in Fig. 5.3.2, all trajectories—apart from those that flow along the
line11—are tangent to the line 12; as a result we call the node improper.

Further, if every trajectory for the system x’ = Ax approaches the origin as
—± + (as in Fig. 5.3.2), then the origin is called a sink; if instead every tra

jectory recedes from the origin, then the origin is a source. Thus we describe the
characteristic pattern of the trajectories in Fig. 5.3.2 as an improper nodal sink.
The solution curves in Fig. 5.3.2 correspond to the choice

A=[j ]
in the system x’ = Ax. The eigenvalues of A are A1 = —14 and A2 = —7 (and thus A1 <A2 <0), with associated eigenvectors

1—11 r3Vi=[
2]

and V2L1
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Equation (4) then gives the general solution

or, in scalar form,

x(r) = ci [—i] e’41 + C2 [ ] e7
x1(t) = —cie’4 + 3c2e_7t,

x2(t) = 2c1e141 +

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (12).

The case of distinct positive eigenvalues mirrors that of distinct negative eigen
values. But instead of analyzing it independently, we can rely on the following
principle, whose verification is a routine matter of checking signs (Problem 30).

PRINCIPLE Time Reversal in Linear Systems

Let x(t) be a solution of the 2-dimensional linear system

x’=Ax

Then the function i(t) = x(—t) is a solution of the system

= -Ai

(1)

(14)

We note furthermore that the two vector-valued functions x(t) and Q) for
—00 < t < cc have the same solution curve (or image) in the plane. However,
the chain rule gives (t) = —x’Q); since 5Q) and x(—t) represent the same point, it
follows that at each point of their common solution curve the velocity vectors of the
two functions x(t) and (t) are negatives of each other. Therefore the two solutions
traverse their common solution curve in opposite directions as t increases—or, al
ternatively, in the same direction as t increases for one solution and decreases for
the other. In short, we may say that the solutions of the systems (1) and (14) corre
spond to each other under “time reversal,” since we get the solutions of one system
by letting time “run backwards” in the solutions of the other.

Example 3

DISTINCT POSITIVE EIGEN VALUES: If the matrix A has positive eigenvalues
with 0 <A2 <Ar, then as you can verify (Problem 31), the matrix —A has negative
eigenvalues —A1 <—A2 <0 but the same eigenvectors v1 and v2. The preceding case
then shows that the system x’ = —Ax has an improper nodal sink at the origin. But
the system x’ = Ax has the same trajectories, except with the direction of motion
(as t increases) along each solution curve reversed. Thus the origin is now a source,
rather than a sink, for the system x’ = Ax, and we call the origin an improper nodal
source. Figure 5.3.3 illustrates typical solution curves given by x(t) = civ1e1t +
c2v2eA2t corresponding to nonzero values of the coefficients c1 and c2.

The solution curves in Fig. 5.3.3 correspond to the choice

A=_[ _]=[_ ] (15)

in the system x’ = Ax thus A is the negative of the matrix in Example 2. Therefore we
can solve the system x’ = Ax by applying the principle of time reversal to the solution in
Eq. (13): Replacing t with —tin the righthand side of (13) leads to

x(t)=c1 []e14t +c2[]e7t. (16)

300

(13)



5.3 A Gallery of Solution Curves of Linear Systems 301

Of course, we could also have “started from scratch” by finding the eigenvalues A1, A2 and
eigenvectors v1, v2 of A. These can be found from the definition of eigenvalue, but it is easier
to note (see Problem 31 again) that because A is the negative of the matrix in Eq. (12), A1
and A2 are likewise the negatives of their values in Example 2, whereas we can take Vj and
V2 to be the same as in Example 2. By either means we find that A1 = 14 and A2 = 7 (so that
o < A2 <A1), with associated eigenvectors

1—i1 r3
Vi=[

2]
and

From Eq. (4), then, the general solution is

x(t) = c [—] el4t + cz [] e7t

FIGURE 5.3.3. Solution curves
x(t) = civlelt +c2v7eA2t forthe
system x’ = Ax when the eigenvalues (in agreement with Eq. (16)), or, in scalar form,

A1, A2 of A are real with
14t 71o <A2 <A1. xi(t) —cie + 3c2e

x2Q) = 2ciel4t+ c2e71.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (15).

Zero Eigenvalues and Straight-Line Solutions

ONE ZERO AND ONE NEGATIVE EIGENVALUE: When ) <A2 = 0, the gen
eral solution (4) becomes

x(t) = clviet + c2v2. (17)

For any fixed nonzero value of the coefficient c1, the term civieAit in Eq. (17) is
a scalar multiple of the eigenvector v1, and thus (as t varies) travels along the line
1 passing through the origin and parallel to v1; the direction of travel is toward the
origin as t —* + because ) < 0. If c1 > 0, for example, then civieAlt extends
in the direction of v1, approaching the origin as t increases, and receding from the
origin as t decreases. If instead Cl < 0 , then civieit extends in the direction
opposite v1 while still approaching the origin as t increases. Loosely speaking, we
can visualize the flow of the term civiet taken alone as a pair of arrows opposing
each other head-to-head at the origin. The solution curve xQ) in Eq. (17) is simply
this same trajectory CivleAit, then, shifted (or offset) by the constant vector c2V2.
Thus in this case the phase portrait of the system x’ = Ax consists of all lines
parallel to the eigenvector v1, where along each such line the solution flows (from
both directions) toward the line 12 passing through the origin and parallel to v1.
Figure 5.3.4 illustrates typical solution curves corresponding to nonzero values of
the coefficients c1 and c2.

It is noteworthy that each single point represented by a constant vector b lying
on the line 12 represents a Constant solution of the system x’ = Ax. Indeed, if b lies
on /2, then b is a scalar multiple k . V2 of the eigenvector v2 of A associated with the
eigenvalue )2 = 0. In this case, the constant-valued solution x(t) b is given by
Eq. (17) with C = 0 and C2 = k. This constant solution, with its “trajectory” being
a single point lying on the line 12, is then the unique solution of the initial value
problem

x’=Ax, x(0)=b

guaranteed by Theorem 1 of Section 4.1. Note that this situation is in marked con
trast with the other eigenvalue cases we have considered so far, in which x(t) 0
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FIGURE 5.3.4. Solution curves
x(t) =c1vie11 +c2v2forthe
system x’ Ax when the eigenvalues
A1, A2 of A are real with
A1 <A2 = 0.



in the system x’ Ax. The eigenvalues of A are A = —35 and A2 = 0, with associated
eigenvectors

F 61 F
V1=[1j and

Based on Eq. (17), the general solution is

or, in scalar form,

x(t) Cl [_ ]e351 + C2 [
x (t) 6c1e35t+ C2,

x2(t) = _cle_35t
— 6c2.

(19)

12

-_7-
c>O,c,<O
-

c1>0.c2>0

--

c1<O,c2<0 \
V1

c1<O,c2>0
\\ —L

11

FIGURE 5.3.5. Solution curves
x(t) = clvle)1t +c2v2 for the
system x’ = Ax when the eigenvalues
A1, A2 of A are real with
O=A2 <A1.

Example 5

Alternatively, directly finding the eigenvalues and eigenvectors of A leads to A1 35 and
A2 = 0, with associated eigenvectors

F 61 r i
Vi=[1j and V2=[6
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Example 4

ii
is the only constant solution of the system x’ = Ax. (In Problem 32 we explore the
general circumstances under which the system x’ Ax has constant solutions other
than x(t) 0.)

The solution curves in Fig. 53.4 correspond to the choice

A=[3 ] (18)

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (18).

ONE ZERO AND ONE POSITIVE EIGENVALUE: When 0= A2 <A1, the solution
of the system x’ = Ax is again given by

x(t) = civieAt + 2v2. (17)

By the principle of time reversal, the trajectories of the system x’ = Ax are identical
to those of the system x’ = —Ax, except that they flow in the opposite direction.
Since the eigenvahies —A and —A2 of the matrix —A satisfy —A1 < —A, = 0, by
the preceding case the trajectories of x’ = —Ax are lines parallel to the eigenvector
v1 and flowing toward the line 12 from both directions. Therefore the trajectories
of the system x’ = Ax are lines parallel to v1 and flowing away from the line 12.

Figure 5.3.5 illustrates typical solution curves given by x(r) = civieAlt + c2v2 cor
responding to nonzero values of the coefficients c1 and 2•

The solution curves in Fig. 5.3.5 correspond to the choice

A =

— [ = [3 fl (20)

in the system x’ = Ax; thus A is the negative of the matrix in Example 4. Once again we can
solve the system using the principle of lime reversal: Replacing t with —t in the right-hand
side of the solution in Eq. (19) of Example 4 leads to

= c []e351 + C2 []. (21)
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Equation (17) gives the general solution of the system x’ = Ax as

x(t)__ci[]e35t+c2[]

(in agreement with Eq. (21)), or, in scalar form,

xi(t) = 6c1e35t+c2,

x2(t) = —cie35t — 6C2.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (20).

Repeated Eigenvalues; Proper and Improper Nodes

REPEATED POSITIVE EIGENVALUE: As we noted earlier, if the matrix A has
one repeated eigenvalue, then A may or may not have two associated linearly inde
pendent eigenvectors. Because these two possibilities lead to quite different phase
portraits, we will consider them separately. We let A denote the repeated eigenvalue
of A with A > 0.

With two independent eigenvectors: First, if A does have two linearly inde
pendent eigenvectors, then it is easy to show (Problem 33) that in fact every nonzero
vector is an eigenvector of A, from which it follows that A must be equal to the
scalar A times the identity matrix of order two, that is,

A_AH olD 0
22

— o ij[o A

Therefore the system x’ = Ax becomes (in scalar form)

x’1(t) = Axi(t).
(23)

x(t) = Ax2Q).

The general solution of Eq. (23) is

S
x1(t) = c1e

(24)
x2(t) =c2et,

or in vector format,

x(t) eAt [n]. (25)

We could also have arrived at Eq. (25) by starting, as in previous cases, from our
general solution (4): Because all nonzero vectors are eigenvectors of A, we are

free to take v1
=

[1 0
]T

and v2
=

[0 1 as a representative pair of linearly
independent eigenvectors, each associated with the eigenvalue A. Then Eq. (4) leads
to the same result as Eq. (25):

x(t) = civieAt +c2v2eAt = e (civi +c2v2) = eAt [Ci ]
Either way, our solution in Eq. (25) shows that xQ) is always a positive scalar

multiple of the fixed vector [c1 c2
1T

Thus apart from the case c1 = c2 = 0, the
trajectories of the system (1) are half-lines, or rays, emanating from the origin and
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(because A > 0) flowing away from it. As noted above, the origin in this case repre
sents a proper node, because no two pairs of “opposite” solution curves are tangent
to the same straight line through the origin. Moreover the origin is also a source
(rather than a sink), and so in this case we call the origin a proper nodal source.
Figure 5.3.6 shows the “exploding star” pattern characteristic of such points.

Example 6

A[ ].
Equation (25) then gives the general solution of the system x’ = Ax as

x(t)=e2t

or, in scalar form,

xi(t) = cle2t,

x2(t) =c2e2t.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (26).

Without two independent elgenvectors: The remaining possibility is that
the matrix A has a repeated positive eigenvalue yet fails to have two linearly indeFIGURE 5.3.6. Solution curves pendent eigenvectors. In this event the general solution of the system x’ — Ax is

x(t) = et E ] for the system given by Eq. (7) above:
x’ = Ax when A has one repeated
positive eigenvalue and two linearly xQ) =c1v1e’ +c2(vit +v2)et. (7)independent eigenvectors.

Here v1 is an eigenvector of the matrix A associated with the repeated eigenvalue A
and v2 is a (nonzero) “generalized eigenvector” that will be described more fully in
Section 5.5. To analyze this trajectory, we first distribute the factor eAt in Eq. (7),
leading to

x(t) = clvlett +c2(viteAt +v2et). (28)

Our assumption that A > 0 implies that both eAt and teAt approach zero as t —* —cc,
and so by Eq. (28) the solution x(t) approaches the origin as t —÷ —cc. Except for
the trivial solution given by c1 = c2 = 0, all trajectories given by Eq. (7) “emanate”
from the origin as t increases.

The direction of flow of these curves can be understood from the tangent vec
tor x’(t). Rewriting Eq. (28) as

x(t) = eAt [c1vi +c2(vit + v2)]

and applying the product rule for vector-valued functions gives

x’(t) = eAtc2v1 + AeAI [civi +c2(vit + v2)]
= eAt(c2vi + Ac1v1 + Ac2v1t+ Ac,v2).

For t 0, we can factor out t in Eq. (29) and rearrange terms to get

x’Q) = teAt [Ac2vi + (Actvi + Ac,v, +c2v1)].

Equation (30) shows that fort 0, the tangent vector x’(t) is a nonzero scalar mul
tiple of the vector Ac2v1 + -(Ac1vi + Ac2v2 +c2v1), which, if c2 0, approaches

The solution curves in Fig. 5.3.6 correspond to the case where the matrix A is given by
Eq. (22) with A = 2:

(26)

(27)

(29)

(30)
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FIGURE 5.3.7. Solution curves
x(t) = civieAt + c,(vit +v7)eAt
for the system x’ = Ax when A has
one repeated positive eigenvalue A
with associated eigenvector v and
“generalized eigenvector” V2.

Example 7

the fixed nonzero multiple Ac2v1 of the eigenvector v1 as t — + or as t — —oo. In
this case it follows that as t gets larger and larger numerically (in either direction),
the tangent line to the solution curve at the point xQ)—since it is parallel to the tan
gent vector x’(t) which approachesAc2v1—becomes more and more nearly parallel
to the eigenvector v1. In short, we might say that as t increases numerically, the
point x(t) on the solution curve moves in a direction that is more and more nearly
parallel to the vector v1, or still more briefly, that near xQ) the solution curve itself
is virtually parallel to v1.

We conclude that if c2 0, then as t —* — the point x(t) approaches the ori
gin along the solution curve which is tangent there to the vector v1. But as t —÷ +00

and the point x(t) recedes further and further from the origin, the tangent line to the
trajectory at this point tends to differ (in direction) less and less from the (moving)
line through xQ) that is parallel to the (fixed) vector v1. Speaking loosely but sug
gestively, we might therefore say that at points sufficiently far from the origin, all
trajectories are essentially parallel to the single vector v1.

If instead c2 = 0, then our solution (7) becomes

x(t) = clviet, (31)

and thus runs along the line l passing through the origin and parallel to the eigen
vector v1. Because A > 0, x(t) flows away from the origin as t increases; the flow is
in the direction of v1 if c1 > 0, and opposite v1 if c1 <0.

We can further see the influence of the coefficient c2 by writing Eq. (7) in yet
a different way:

x(t) = civieAt + C2(vit +v2)eAt = (c1 +c2t)vieAt +c2v2eAt. (32)

It follows from Eq. (32) that if c2 0, then the solution curve x(t) does not cross
the line 11. Indeed, if c2 > 0, then Eq. (32) shows that for all t, the solution curve
xQ) lies on the same side of l as v2, whereas if c2 <0, then xQ) lies on the opposite
side of l.

To see the overall picture, then, suppose for example that the coefficient
c2 > 0. Starting from a large negative value oft, Eq. (30) shows that as t increases,
the direction in which the solution curve x(t) initially proceeds from the origin is
roughly that of the vector tetAc2vi. Since the scalar teAtAc2 is negative (because

<0 and Ac2 > 0), the direction of the trajectory is opposite that of v1. For large
positive values of t, on the other hand, the scalar tettAc2 is positive, and so x(t)
flows in nearly the same direction as v1. Thus, as t increases from —no to +no,
the solution curve leaves the origin flowing in the direction opposite v1, makes a
“U-turn” as it moves away from the origin, and ultimately flows in the direction of
vi.

Because all nonzero trajectories are tangent at the origin to the line l, the ori
gin represents an improper nodal source. Figure 5.3.7 illustrates typical solution
curves given by x(t) = civieAt +c2(v1t+v2)e’1’ for the system x’ = Ax when A
has a repeated eigenvalue but does not have two linearly independent eigenvectors.

The solution curves in Fig. 5.3.7 correspond to the choice

I=[ 1] (33)

in the system x’ = Ax. In Examples 2 and 3 of Section 5.5 we will see that A has the repeated
eigenvalue A = 4 with associated eigenvector and generalized eigenvector given by

1—31 Ii
vi=[ 3]

and (34)
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respectively. According to Eq. (7) the resulting general solution is

x(t) = Cl [1] e4t + C2
[_3t+ 1 ] e4t, (35)

or, in scalar form,

xi(t) = (—3c2t
— 3ci +c2)e4t,

x2(t) = (3c2t + 3ci)e4.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc
don field, for the system x’ = Ax with A given by Eq. (33).

REPEATED NEGATIVE EIGENVALUE: Once again the principle of time reversal
shows that the solutions x(t) of the system x’ = Ax are identical to those of x’ = —Ax
with t replaced by —t; hence these two systems share the same trajectories while
flowing in opposite directions. Further, if the matrix A has the repeated negative
eigenvalue )L, then the matrix —A has the repeated positive eigenvalue —) (Problem
31 again). Therefore, to construct phase portraits for the system x’ = Ax when A has
a repeated negative eigenvalue, we simply reverse the directions of the trajectories in
the phase portraits corresponding to a repeated positive eigenvalue. These portraits
are illustrated in Figs. 5.3.8 and 5.3.9. In Fig. 5.3.8 the origin represents a proper
nodal sink, whereas in Fig. 5.3.9 it represents an improper nodal sink.

CI <>O A2>o

\ c1>O c2<Oc3<o

N
xl

FIGURE 5.3.8. Solution curves FIGURE 5.3.9. Solution curves
x(t) =et HI 1 forthe system x(t) civie+ca(vit +v2)et

L C2 j for the system x = Ax when A has
x’ = Ax when A has one repeated one repeated negative eigenvalue A
negative eigenvalue A and two linearly with associated eigenvector v and
independent eigenvectors. “generalized eigenvector” v2.

The solution curves in Fig. 5.3.8 correspond to the choice

A— F2 O1[—2 0
36[o 2J[ 0 -2

in the system x’ = Ax; thus A is the negative of the matrix in Example 6. We can solve this
system by applying the principle of time reversal to the solution found in Eq. (27): Replacing

with —tin the right-hand side of Eq. (27) leads to

x(t) = e
[ci]

(37)

or, in scalar form,

xi(t) = cle_2t,

Example 8

xa(t) =c2e21
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or, in scalar form,

xi(t) = (—3c2t
— 3ci — c2)e41,

x2(t) = (3c2t + 3ci)e_41.

L

Note that replacing C2 with —c2 in the solution (39) yields the solution (40), thus confirming
that the two solutions are indeed equivalent. Our gallery Fig. 5.3.16 shows a more complete
set of solution curves, together with a direction field, for the system x’ = Ax with A given by
Eq. (38).

The Special Case of a Repeated Zero Eigenvalue

REPEATED ZERO EIGENVALUE: Once again the matrix A may or may not have
two linearly independent eigenvectors associated with the repeated eigenvalue
A = 0. If it does, then (using Problem 33 once more) we conclude that every nonzero
vector is an eigenvector of A, that is, that Av = 0 v = 0 for all two-dimensional
vectors v. It follows that A is the zero matrix of order two, that is,

A=[ ].
Therefore the system x’ = Ax reduces to x(t) = xQ) = 0, which is to say that
xiQ) and x2Q) are each constant functions. Thus the general solution of x’ = Ax is
simply

x(t)
= [], (41)

where c1 and c2 are arbitrary constants, and the “trajectories” given by Eq. (41) are
simply the fixed points (c1,c2) in the phase plane.

Example 9
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Alternatively, because A is given by Eq. (22) with A = —2 , Eq. (25) leads directly to the
solution in Eq. (37). Our gallery Fig. 5.3.16 shows a more complete set of solution curves,
together with a direction field, for the system x’ = Ax with A given by Eq. (36).

The solution curves in Fig. 5.3.9 correspond to the choice

A=z_[ —]=[: _fl (38)

in the system x’ Ax. Thus A is the negative of the matrix in Example 7, and once again we
can apply the principle of time reversal to the solution found in Eq. (35): Replacing t with —t
in the right-hand side of Eq. (35) yields

—3 1 —41 F 3t + 11 —41x(t) = Cl e + C2
—3t

e . (39)

We could also arrive at an equivalent form of the solution in Eq. (39) in the following way.
You can verify that A has the repeated eigenvalue A = —2 with eigenvector v1 given by
Eq. (34), that is,

F—3
Vi=[

3

However, as the methods of Section 5.5 will show, a generalized eigenvector v2 associated
with v1 is now given by

Dl F—i

that is, v2 is the negative of the generalized eigenvector in Eq. (34). Equation (7) then gives
the general solution of the system x’ Ax as

x(t) = Cl [1 ] e41 + C2
1]

(40)

‘is
ng
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c1>O,c7>O

N%%
Nç

, -

% c<O,c2<O

x1

FIGURE 5.3.10. Solution curves
x(t) = (clvl +c2v2) +c2vit for the
system x’ = Ax when A has a repeated
zero eigenvalue with associated
eigenvector v1 and “generalized
eigenvector” v2. The emphasized point
on each solution curve corresponds to
t = 0.

Example 10

If instead A does not have two linearly independent eigenvectors associated
with ) = 0, then the general solution of the system x’ = Ax is given by Eq. (7) with

= 0:
x(t) = c1v1 + C2(Vit + v2) = (c1v1 +c2v2)+c2v1t. (42)

Once again v1 denotes an eigenvector of the matrix A associated with the repeated
eigenvalue ? = 0 and v2 denotes a corresponding nonzero “generalized eigenvector.”
If c2 0, then the trajectories given by Eq. (42) are lines parallel to the eigenvector
v1 and “starting” at the point c1v1 + c2v2 (when t = 0). When c2 > 0 the trajectory
proceeds in the same direction as v1, whereas when c2 < 0 the solution curve flows
in the direction opposite v1. Once again the lines 1 and /2 passing through the origin
and parallel to the vectors v1 and v2, respectively, divide the plane into “quadrants”
corresponding to the signs of the coefficients c1 and c2. The particular quadrant in
which the “starting point” c1v1 + c2v2 of the trajectory falls is determined by the
signs of c1 and c2. Finally, if c2 = 0, then Eq. (42) gives xQ) c1v1 for all t, which
means that each fixed point c1v1 along the line 1 corresponds to a solution curve.
(Thus the line l could be thought of as a median strip dividing two opposing lanes
of traffic.) Figure 5.3.10 illustrates typical solution curves corresponding to nonzero
values of the coefficients Ci and c2.

The solution curves in Fig. 5.3.10 correspond to the choice

A=[ (43)

in the systemx’ = Ax. You can verify that v1 [2 —l is an eigenvector of A associated
with the repeated eigenvalue ) = 0. Further, using the methods of Section 5.5 we can show
thatv2 [1 0]T is acorresponding “generalized eigenvector” of A. According to Eq. (42)
the general solution of the system x’ = Ax is therefore

2+([2]t+[i])xQ)=c11 I
[—1J (44)

or, in scalar form,

= 2c1 + (2t + l)c2,

x2(t) = C tc2.

Our gallery Fig. 5.3.t6 shows a more complete set of solution curves, together with a direc
tion field, for the system x’ = Ax with A given by Eq. (43). I

Complex Conjugate Eigenvalues and Eigenvectors
We turn now to the situation in which the eigenvalues A and 2 of the matrix A
are complex conjugate. As we noted at the beginning of this section, the general
solution of the system x’ = Ax is given by Eq. (5):

x(t) = c1e’(acosqt — bsinqt) +c2e”(bcosqt + asinqt). (5)

Here the vectors a and b are the real and imaginary parts, respectively, of a (complex-
valued) eigenvector of A associated with the eigenvalue )L = p + iq. We will divide
the case of complex conjugate eigenvalues according to whether the real part p of
?i and )2 is zero, positive, or negative:

• Pure imaginary l, )2 = ±iq with q 0)
• Complex with negative real part l, A = p ± iq with p <0 and q 0)
• Complex with positive real part )2 = p ± iq with p > 0 and q 0)

I
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Pure Imaginary Eigenvalues: Centers and Elliptical Orbits

A_AIl=[68A 7]A2+loo_o

and hence has the complex conjugate eigenvalues Ai, A2 = ±lOi. If v = [a b is an
eigenvector associated with A lOi, then the eigenvector equation (A — AI)v 0 yields

16—lOi —17 lEal 10[A—lOi.I]v= [ 8 _6_lOi][b] = [o

Upon division of the second row by 2, this gives the two scalar equations

(6— lOi)a — 17b = 0,

4a — (3 + 5i)b = 0,

r31 r51
and

x(t) = ci ([]cos10t_ []sinl0t +c2 ([]cos lot + []sin lot)

— [ c1 (3 cos lOt — 5 sin lOt) + C2(5 cos lOt + 3 sin lOt)

— [ 4Ci cos lOt + 4C2 sin lOt

xi(t) = 4cos lOt — sin lot,

x2(t) = 2cos lOt + 2sin lOt.

Example 11

PURE IMAGINARY EIGENVALUES: Here we assume that the eigenvalues of the
matrix A are given by A1 A2 = ±iq with q 0. Taking p = 0 in Eq. (5) gives the
general solution

x(t) = ci(acosqt —bsinqt) +c2(bcosqt + asinqt) (45)

for the system x’ = Ax. Rather than directly analyze the trajectories given by
Eq. (45), as we have done in the previous cases, we begin instead with an exam
ple that will shed light on the nature of these solution curves.

Solve the initial value problem

16 —171 r41
= [ _6]X x(O)=

[2]
(46)

A=[ ] (47)

Solution The coefficient matrix

has characteristic equation

)

r
V
5

El

a
e
h

S

0

le
of

each of which is satisfied by a = 3 + Si and b = 4. Thus the desired eigenvector is v =

[3 + 5i ]E’,
with real and imaginary parts

(48)

respectively. Taking q = 10 in Eq. (45) therefore gives the general solution of the system
x’ Ax:

(49)

(50)

FIGURE 5.3.11. Solution curve
xi(t) =4coslOt—sinlOt,
x2(t) = 2cos lOt + 2sin 101 for the
initial value problem in Eq. (46).

To solve the given initial value problem it remains only to determine values of the coefficients

Cl and c2. The initial condition x(O) = [4 2
]T readily yields c = C2 = 4, and with these

values Eq. (50) becomes (in scalar form)

Figure 5.3.11 shows the trajectory given by Eq. (51) together with the initial
point (4, 2).

(51)
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This solution curve appears to be an ellipse rotated counterclockwise by the
angle 9 = arctan 0.4636. We can verify this by finding the equations of the
solution curve relative to the rotated u- and v-axes shown in Fig. 5.3.11. By a
standard formula from analytic geometry, these new equations are given by

2 1
u = x1 cos 9 + x2 sin 9 = —xi + —x2,

1 2
(52)

v = —xi sin 9 + x2 cos 9 = ———xi + —x2.

In Problem 34 we ask you to substitute the expressions for x1 and x2 from Eq. (51)
into Eq. (52), leading (after simplification) to

a, = 2’../cos lOt, v = /sin lOt. (53)

Equation (53) not only confirms that the solution curve in Eq. (51) is indeed an
ellipse rotated by the angle 9 , but it also shows that the lengths of the semi-major
and semi-minor axes of the ellipse are 2/ and respectively.

Furthermore, we can demonstrate that any choice of initial point (apart from
the origin) leads to a solution curve that is an ellipse rotated by the same angle 9 and
“concentric” (in an obvious sense) with the trajectory in Fig. 5.3.11 (see Problems
35—37). All these concentric rotated ellipses are centered at the origin (0, 0), which
is therefore called a center for the system x’ = Ax whose coefficient matrix A has
pure imaginary eigenvalues. Our gallery Fig. 5.3.16 shows a more complete set of
solution curves, together with a direction field, for the system x’ = Ax with A given
by Eq. (47).

Further investigation: Geometric significance of the eigenvector. Our general
solution in Eq. (50) was based upon the vectors a and b in Eq. (49), that is, the real
and imaginary parts of the complex eigenvector v = [3 + 5i ]“ of the matrix A.
We might therefore expect a and b to have some clear geometric connection to the
solution curve in Fig. 5.3.11. For example, we might guess that a and b would be
parallel to the major and minor axes of the elliptical trajectory. However, it is clear
from Fig. 5.3.12—which shows the vectors a and b together with the solution curve
given by Eq. (51)—that this is not the case. Do the eigenvectors of A, then, play
any geometric role in the phase portrait of the system x’ = Ax?

The (affirmative) answer lies in the fact that any nonzero real or complex
multiple of a complex eigenvector of the matrix A is still an eigenvector of A as
sociated with that eigenvalue. Perhaps, then, if we multiply the eigenvector v =

{ 3 + 5i 4]” by a suitable nonzero complex constant z, the resulting eigenvector
will have real and imaginary parts a and b that can be readily identified with ge

ometric features of the ellipse. To this end, let us multiply v by the complex scalar
z = -(1 + i). (The reason for this particular choice will become clear shortly.) The
resulting new complex eigenvector of the matrix A is

- I r3+5i1 F—l+4iv=Z.v=—(l+i).[

and has real and imaginary parts

and

FIGURE 5.3.12. Solution curve for
the initial value problem in Eq. (46)
showing the vectors a, b, , and b.
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It is clear that the vector b is parallel to the major axis of our elliptical trajectory.
Further, you can easily check that a b = 0, which means that a is perpendicular
to b, and hence is parallel to the minor axis of the ellipse, as Fig. 5.3.12 illustrates.
Moreover, the length of b is twice that of a, reflecting the fact that the lengths of
the major and minor axes of the ellipse are in this same ratio. Thus for a matrix A
with pure imaginary eigenvalues, the complex eigenvector of A used in the general
solution (45)—if suitably chosen—is indeed of great significance to the geometry
of the elliptical solution curves of the system x’ = Ax.

How was the value (l + i) chosen for the scalar z? In order that the real
and imaginary parts a and b of z v be parallel to the axes of the ellipse, at a
minimum a and b must be perpendicular to each other. In Problem 38 we ask you
to show that this condition is satisfied if and only if z is of the form r(l ± i), where
r is a nonzero real number, and that if z is chosen in this way, then a and b are in
fact parallel to the axes of the ellipse. The value r = then aligns the lengths of
a and b with those of the semi-minor and -major axes of the elliptical trajectory.
More generally, we can show that given any eigenvector v of a matrix A with pure
imaginary eigenvalues, there exists a constant z such that the real and imaginary
parts a and b of the eigenvector = z . v are parallel to the axes of the (elliptical)
trajectories of the system x’ = Ax.

Further investigation: Direction of flow. Figs. 5.3.11 and 5.3.12 suggest that the
solution curve in Eq. (51) flows in a counterclockwise direction with increasing t.

However, you can check that the matrix

_A_F_6 17
6

has the same eigenvalues and eigenvectors as the matrix A in Eq. (47) itself, and yet

(by the principle of time reversal) the trajectories of the system x’ = —Ax are iden
tical to those of x’ = Ax while flowing in the opposite direction, that is, clockwise.
Clearly, mere knowledge of the eigenvalues and eigenvectors of the matrix A is not

e sufficient to predict the direction of flow of the elliptical trajectories of the system
= Ax as t increases. How then can we detennine this direction of flow?

One simple approach is to use the tangent vector x’ to monitor the direction in
e which the solution curves flow as they cross the positivex1-axis. Ifs is any positive
y number (so that the point (s, 0) lies on the positive xi-axis), and if the matrix A is

given by
b

LC d

then any trajectory for the system x’ = Ax passing through (s, 0) satisfies

X!=AX=[a ][]=[a5]=s[a]

at the point (s, 0). Therefore, at this point the direction of flow of the solution curve

is a positive scalar multiple of the vector [a c Since c cannot be zero (see
Problem 39), this vector either points “upward” into the first quadrant of the phase
plane (if c > 0), or “downward” into the fourth quadrant (if c <0). If upward, then
the flow of the solution curve is counterclockwise; if downward, then clockwise.
For the matrix A in Eq. (47), the vector [a c = [6 8

1T
points into the first

quadrant because c = 8 > 0, thus indicating a counterclockwise direction of flow
(as Figs. 5.3.11 and 5.3.12 suggest).
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Complex Eigenvalues: Spiral Sinks and Sources

COMPLEX EIGENVALUES WITH NEGATIVE REAL PART: Now we assume that
the eigenvalues of the matrix A are given by )i, A2 = p ± I q with q 0 and p <0.
In this case the general solution of the system x’ = Ax is given directly by Eq. (5):

x(t) = ciePt(acosqt —bsinqt)+c2e”t(bcosqt +asinqt), (5)

FIGURE 5.3.13. Solution curve
x1 (t) = et (4 cos lOt —sin lOt),
x2(t) = e_t(2cos lOt +2sinlOt)
for the initial value problem in
Eq. (54). The dashed and solid portions
of the curve correspond to negative and
positive values of t, respectively.

lAAIl=58A
7A=(A++100=0,

(6—lOi)a-— l7b=O,

4a — (3 + 5i)b = 0.

Example 12

Solution The coefficient matrix

has characteristic equation

where the vectors a and b have their usual meaning. Once again we begin with an
example to gain an understanding of these solution curves.

Solve the initial value problem

/ Es —171 E41
= [8 7 j

x, x(0)
=

[2 j
(54)

A=[ —;] (55)

and hence has the complex conjugate eigenvalues A, A2 —1 ± lOi. If v = [a b is
an eigenvector associated with A —1 + 101, then the eigenvector equation (A

—
AI)v = 0

yields the same system (48) of equations found in Example 11:

(48)

As in Example 11, each of these equations is satisfied by a = 3 + 51 and b = 4. Thus the

desired eigenvector, associated with A1 = —1 + lOi, is once again v = [3 + 51 4 ]‘, with
real and imaginary parts

a=[] and b=[] (56)

respectively. Taking p = —1 and q = lOin Eq. (5) therefore gives the general solution of the
system x’ = Ax:

x(t) = cle_t ([ ] cos lOt
— [] sin lot) +c2e_r ([ ] cos lOt + [] sin lOt)

— F cie(3 cos lOt — 5sin lOt) + c2et(5cos lOt + 3sin lot)— L 4cie_t cos lOt + 4c2e’ Sill lOt

The initial condition x(0) = [4 2
1T

gives c = C2 = once again, and with these values
Eq. (57) becomes (in scalar form)

x (t) = e_t(4cos lOt — sin lot),
(58)

x2(t) = e_t(2cos lOt + 2sin lOt).

Figure 5.3.13 shows the trajectory given by Eq. (58) together with the initial
point (4, 2). It is noteworthy to compare this spiral trajectory with the elliptical
trajectory in Eq. (51). The equations for xi(t) and x2Q) in (58) are obtained by
multiplying their counterparts in (51) by the common factor e1, which is positive
and decreasing with increasing t. Thus for positive values oft, the spiral trajectory
is generated, so to speak, by standing at the origin and “reeling in” the point on the
elliptical trajectory (51) as it is traced out. When t is negative, the picture is rather
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one of “casting away” the point on the ellipse farther out from the origin to create
the corresponding point on the spiral.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together
with a direction field, for the system x’ = Ax with A given by Eq. (55). Because the
solution curves all “spiral into” the origin, we call the origin in this a case a spiral
sink.

COMPLEX EIGENVALUES WITH POSITIVE REAL PART: We conclude with the
case where the eigenvalues of the matrix A are given by ?L, )2 = p ± i q with q 0
and p > 0. Just as in the preceding case, the general solution of the system x’ = Ax
is given by Eq. (5):

x(t) = cie’t(acosqt — bsinqt) +c2e”(bcosqt + asinqt). (5)

An example will illustrate the close relation between the cases p > 0 and p <0.
Example 13 Solve the initial value problem

x’
= [1 ] x, x(0)

= []. (59)

Solution Although we could directly apply the eigenvalue/eigenvector method as in previous cases
(see Problem 40), here it is more convenient to notice that the coefficient matrix

A=[ ] (60)

is the negative of the matrix in Eq. (55) used in Example 12. By the principle of time reversal,
therefore, the solution of the initial value problem (59) is given by simply replacing t with —t
in the right-hand sides of the solution (58) of the initial value problem in that example:

x1(t) = et(4cos lOt + sin lOt),
(61)x2(t) et(2cos lOt — 2sin lOt).

Figure 5.3.14 shows the trajectory given by Eq. (61) together with the initial
point (4,2). Our gallery Fig. 5.3.16 shows this solution curve together with a direc
tion field for the system x’ = Ax with A given by Eq. (60). Because the solution
curve “spirals away from” the origin, we call the origin in this case a spiral source.

A 3-Dimensional Example
Figure 5.3.15 illustrates the space trajectories of solutions of the 3-dimensional sys
tem x’ = Ax with constant coefficient matrix

4 10 01
A=I —5 —6 0. (62)

[ 0 0 1]

To portray the motion in space of a point xQ) moving on a trajectory of this system,
we can regard this trajectory as a necklace string on which colored beads are placed
to mark its successive positions at fixed increments of time (so the point is moving
fastest where the spacing between beads is greatest). In order to aid the eye in
following the moving point’s progress, the size of the beads decreases continuously
with the passage of time and motion along the trajectory.

FIGURE 5.3.14. Solution curve
x1 (t) = et(4cos lOt + sin lOt),
x7(t) = et(2cos lOt — 2sin lOt) for
the initial value problem in Eq. (59).
The dashed and solid portions of the
curve correspond to negative and
positive values of t, respectively.
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The matrix A has the single real eigenvalue —l with the single (real) eigen

vector [0 0 1
T

and the complex conjugate eigenvalues —l + 51. The negative
real eigenvalue corresponds to trajectories that lie on thex3-axis and approach the
origin as —÷ 0 (as illustrated by the beads on the vertical axis of the figure). Thus
the origin (0, 0, 0) is a sink that “attracts” all the trajectories of the system.

The complex conjugate eigenvalues with negative real part correspond to tra
jectories in the horizontalxix2-plane that spiral around the origin while approaching
it. Any other trajectory—one which starts at a point lying neither on the z-axis nor in
thex1x2-plane—combines the preceding behaviors by spiraling around the surface
of a cone while approaching the origin at its vertex.

I
I
1

4’

FIGURE 5.3.15. Three-dimensional trajectories for the system x’ Ax
with the matrix A given by Eq. (62).
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Gallery of Typical Phase Portraits for the System x’ = Ax: Nodes
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Proper Nodal Source: A repeated posi
tive real eigenvalue with two linearly in
dependent eigenvectors.

Proper Nodal Sink: A repeated negative
real eigenvalue with two linearly indepen
dent eigenvectors.

ie

is

a

in

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real
eigenvalue without two linearly independent eigenvectors (right).

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real
eigenvalue without two linearly independent eigenvectors (right).

FIGURE 5.3.16. Gallery of typical phase plane portraits for the system x’ = Ax.
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Gallery of Typical Phase Portraits for the System x’ = Ax:
Saddles, Centers, Spirals, and Parallel Lines

Saddle Point: Real eigenvalues of oppo
site sign.

Spiral Source: Complex conjugate
eigenvalues with positive real part.

Parallel Lines: One zero and one neg
ative real eigenvalue. (If the nonzero
eigenvalue is positive, then the trajecto
ries flow away from the dotted line.)

FIGURE 5.3.16. (Continued)

Center: Pure imaginary eigenvalues.

Spiral Sink: Complex conjugate eigen
values with negative real part.

Parallel Lines: A repeated zero eigen
value without two linearly independent
eigenvectors.
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Problems
For each of the systems in Problems 1 through 16 in Section
5.2, categorize the eigenvalues and eigenvectors of the coeffi
cient matrix A according to Fig. 5.3.16 and sketch the phase
portrait of the system by hand. Then use a computer system or
graphing calculator to check your answet:

The phase portraits in Problem 17 through 28 corre
spond to linear systems ofthe form x’ = Ax in which the matrix
A has two linearly independent eigenvectors. Determine the
nature of the eigenvalues and eigenvectors of each system. For
example, you may discern that the system has pure imaginary
eigenvalues, or that it has real eigenvalues of opposite sign;
that an eigenvector associated with the positive eigenvalue is

Troughly [2 —1 ] , etc.

17.

lx.

5.3 A Gallery of Solution Curves of Linear Systems 31 7

20. -

21.

22.

23.19.
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in Example 1 by introducing the oblique uv-coordinate
system indicated in Fig. 5.3.17, in which the u-and v

axes are determined by the eigenvectors v1
=

and

V2
= [1 ]. respectively.

FIGURE 5.3.17. The oblique uv-coordinate system
determined by the eigenvectors vi and V2.

The nv-coordinate functions 0(t) and 0(t) of the
moving point x(t) are simply its distances from the origin
measured in the directions parallel to Vi and v2. It follows
from (9) that a trajectory of the system is described by

0(t) uOe_2t, 0(t) = voe5t (63)

where u = u(O) and vo u(O). (a) Show that if 00 0,
then this lrajectory lies on the u-axis, whereas if no = 0,
then it lies on the v-axis. (b) Show that if no and v are
both nonzero, then a “Cartesian” equation of the paramet
ric curve in Eq. (63) is given by v = Cu_72.

30. Use the chain rule for vector-valued functions to verify the
principle of time reversal.

28.

29. We can give a simpler description of the general solution

x(t) = c []e2t +C2 [ ]e5t (9)

of the system

318

24.

25.

26.

27.
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0,
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In Problems 3 1—33 A represents a 2 x 2 matrix.

31. Use the definitions of eigenvalue and eigenvector (Section
5.2) to prove that if A is an eigenvalue of A with associ
ated eigenvector v, then —A is an eigenvalue of the ma
trix —A with associated eigenvector v. Conclude that if
A has positive eigenvalues 0 < A < A1 with associated
eigenvectors Vi and v2, then —A has negative eigenvalues
—Ai < —A2 <0 with the same associated eigenvectors.

32. Show that the system x’ = Ax has constant solutions other
than x(t) 0 if and only if there exists a (constant) vector
x 0 with Ax 0. (It is shown in linear algebra that such
a vector x exists exactly when det(A) 0.)

33. (a) Show that if A has the repeated eigenvalue A with two
linearly independent associated eigenvectors, then every
nonzero vector V is an eigenvector of A. (Hint: Express V

as a linear combination of the linearly independent eigen
vectors and multiply both sides by A.) (b) Conclude that
A must be given by Eq. (22). (Suggestion: In the equation

Av=AVtakev=[1 0]TanclV=[O i]T•)

34. Verify Eq. (53) by substituting the expressions for x (t)
and x2(t) from Eq. (51) into Eq. (52) and simplifying.

Problems 35—3 7 show that all nontrivial solution curves of the
system in Example 11 are ellipses rotated by the same angle
as the trajectory in Fig. 5.3.11.

35. The system in Example 11 can be rewritten in scalar form
as

x = 6x
— 17x2,

4 = 8x
— 6X2,

leading to the first-order differential equation

dx2 — dx2/dt
— 8xi —6X2

dx1 — dxi/dt
— 6xi — 17x2’

or, in differential form,
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36. In analytic geometry it is shown that the general quadratic
equation

Ax + Bx1x2 + C4 = k (65)

represents an ellipse centered at the origin if and only if
Ak > 0 and the discriminant B2 — 4AC <0. Show that
Eq. (64) satisfies these conditions if k < 0, and thus con
clude that all nondegenerate solution curves of the system
in Example 11 are elliptical.

37. It can be further shown that Eq. (65) represents in general
a conic section rotated by the angle 0 given by

B
tan20=

A—C

Show that this formula applied to Eq. (64) leads to the an
gle & = arctan found in Example 11, and thus conclude
that all elliptical solution curves of the system in Exam
ple 11 are rotated by the same angle 0. (Suggestion: You
may find useful the double-angle formula for the tangent
function.)

T38. Let v
= { 3 + 5m 4] be the complex elgenvector found

in Example 11 and let z be a complex number. (a) Show
that the real and imaginary parts a and b, respectively,
of the vector i = z v are perpendicular if and only if
z = r(l ± i) for some nonzero real number r. (b) Show
that if this is the case, then a and b are parallel to the
axes of the elliptical trajectory found in Example 11 (as
Fig. 5.3.12 indicates).

39. Let A denote the 2 x 2 matrix

A=H
b

H d

(a) Show that the characteristic equation of A (Eq. (8),
Section 5.2) is given by

A2
—

(a + d)A + (ad — bc) = 0.

(b) Suppose that the eigenvalues of A are pure imaginary.
Show that the trace T(A) a + d of A must be zero
and that the determinant D(A) = ad — bc must be
positive. Conclude that c 0.

40. Use the eigenvalue/eigenvector method to confirm the so
lution in Eq. (61) of the initial value problem in Eq. (59).

r

d

in
vs

(6X2 — 8xi) dx1 + (6xi — l7x2) dx2 = 0.

Verify that this equation is exact with general solution

—4x + 6x1x2 — = k, (64)

where k is a constant.

5.3 Application Dynamic Phase Plane Graphics

Using computer systems we can “bring to life” the static gallery of phase portraits
in Fig. 5.3.16 by allowing initial conditions, eigenvalues, and even eigenvectors to
vary in “real time.” Such dynamic phase plane graphics afford additional insight
into the relationship between the algebraic properties of the 2 x 2 matrix A and the
phase plane portrait of the system x’ = Ax.


