Examples: Solving \boldsymbol{n} th Order Equations

- Euler Solution Atoms and Euler Base Atoms
- L. Euler's Theorem
- The Atom List
- First Order. Solve $2 \boldsymbol{y}^{\prime}+5 \boldsymbol{y}=0$.
- Second Order. Solve the equations $y^{\prime \prime}+2 y^{\prime}+y=0, y^{\prime \prime}+3 y^{\prime}+2 y=0$ and $y^{\prime \prime}+2 y^{\prime}+5 y=0$.
- Third Order. Solve $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime}=0$ and $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime \prime}=0$.
- Fourth Order. Solve $y^{(4)}-y^{(2)}=0$.

Atoms

\qquad
Assume symbols \boldsymbol{a} and \boldsymbol{b} are real constants, with $\boldsymbol{a} \neq \mathbf{0}$ and $\boldsymbol{b}>\mathbf{0}$.
An Euler base atom is one of the functions

$$
\begin{aligned}
& 1, \cos b x, \sin b x, \\
& e^{a x}, e^{a x} \cos b x, e^{a x} \sin b x .
\end{aligned}
$$

An Euler solution atom is a base atom multiplied by a power \boldsymbol{x}^{n}, where $\boldsymbol{n} \geq \mathbf{0}$ is an integer.

$$
\text { Euler solution atom }=x^{n}(\text { Euler base atom })
$$

Examples
Atoms: $1, \cos (3 x / 2), x^{3}, x \cos (2 x), x^{2} e^{2 x} \sin (3 x), \cos (\pi x), e^{e^{2} x}$
Not an atom: $2,-x, x^{3 / 2}, \tan x, \sin \left(x^{2}\right), e^{x^{2}}, \frac{x}{1+x^{2}}, \ln |x|, \sinh x$

Euler's Theorem

Theorem 1 (L. Euler)

The function $\boldsymbol{y}=\boldsymbol{x}^{m} \boldsymbol{e}^{r_{1} x}$ is a solution of a constant-coefficient linear homogeneous differential equation of the \boldsymbol{n} th order if and only if $\left(\boldsymbol{r}-\boldsymbol{r}_{1}\right)^{m+1}$ divides the characteristic polynomial.

Euler's theorem is used to construct solutions of the \boldsymbol{n} th order differential equation. The solutions so constructed are \boldsymbol{n} distinct Euler solution atoms, hence independent. Picard's theorem implies the list of Euler solution atoms is a basis for the solution space.

Euler's Theorem in Words

To construct solutions of homogeneous constant-coefficient differential equations, use Euler's Theorem as follows.

- Find the roots of the characteristic equation.
- For each real root r, the exponential solution $e^{r x}$ is an Euler base atom solution.
- For each complex conjugate pair of roots $a \pm b i, b>0$, the functions $e^{a x} \cos b x, e^{a x} \sin b x$ are Euler base atom solutions.
- Multiply each base atom by the powers $1, x, x^{2}, \ldots, x^{k-1}$, where k is the multiplicity of the root. The atoms so found are a basis of solutions for the differential equation.

The Atom List

1. If \boldsymbol{r}_{1} is a real root, then the Euler base atom for \boldsymbol{r}_{1} is $\boldsymbol{e}^{\boldsymbol{r}_{1} \boldsymbol{x}}$. The root \boldsymbol{r}_{1} has multiplicity \boldsymbol{k} provided factor $\left(\boldsymbol{r}-\boldsymbol{r}_{1}\right)^{k}$ divides the characteristic polynomial, but factor $(\boldsymbol{r}-$ $\left.\boldsymbol{r}_{1}\right)^{k+1}$ does not. Multiply the base atom by powers $\mathbf{1}, \boldsymbol{x}, \ldots, \boldsymbol{x}^{k-1}$ (a total of \boldsymbol{k} terms) to obtain the atom list

$$
e^{r_{1} x}, x e^{r_{1} x}, \ldots, x^{k-1} e^{r_{1} x}
$$

2. If $r_{1}=a+i b(b>0$ assumed $)$ and its conjugate $r_{2}=\boldsymbol{a}-\boldsymbol{i b}$ are roots of the characteristic equation, then the Euler base atoms for this pair of roots (both \boldsymbol{r}_{1} and \boldsymbol{r}_{2} counted) are

$$
e^{a x} \cos b x, \quad e^{a x} \sin b x
$$

For a root of multiplicity \boldsymbol{k}, these real atoms are multiplied by atoms $\mathbf{1}, \ldots, \boldsymbol{x}^{k-1}$ to obtain the complete list of $2 \boldsymbol{k}$ atoms

$$
\begin{aligned}
& e^{a x} \cos b x, x e^{a x} \cos b x, \ldots, x^{k-1} e^{a x} \cos b x \\
& e^{a x} \sin b x, \quad x e^{a x} \sin b x, \ldots, x^{k-1} e^{a x} \sin b x
\end{aligned}
$$

1 Example (First Order) Solve $2 y^{\prime}+5 y=0$ by Euler's method, verifying $\boldsymbol{y}_{h}=$ $c_{1} e^{-5 x / 2}$.

Solution

$2 y^{\prime}+5 y=0 \quad$ Given differential equation.
$2 r+5=0 \quad$ Characteristic equation. Use the shortcut $y^{(n)} \rightarrow \boldsymbol{r}^{n}$.
$r=-5 / 2 \quad$ Exactly one real root.
Atom $=e^{-5 x / 2} \quad$ For a real root r, the Euler base atom is $e^{r x}$.
$y_{h}=c_{1} e^{-5 x / 2} \quad$ The general solution y_{h} is written by multiplying the atom list by constant c_{1}.

2 Example (Second Order I) Solve $y^{\prime \prime}+2 y^{\prime}+\boldsymbol{y}=0$ by Euler's method, showing that $y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}$.

Solution

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+y=0 \\
& r^{2}+2 r+1=0 \\
& r=-1,-1 \\
& \text { Base Atom }=e^{-x} \\
& \text { Atoms }=e^{-x}, x e^{-x} \\
& y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}
\end{aligned}
$$

Given differential equation.
Characteristic equation. Use shortcut $y^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Exactly two real roots.
For a real root \boldsymbol{r}_{1}, the Euler base atom is $e^{r_{1} x}$.
For a root of multiplicity 2 , multiply the base atom by powers $1, x$, to create 2 Euler solution atoms. The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants c_{1}, c_{2}.

3 Example (Second Order II) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by Euler's method, showing $y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$.

Solution

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0 \quad \text { Given differential equation. }
$$

$$
r^{2}+3 r+2=0
$$

$$
r=-1,-2
$$

Base Atoms $=\begin{aligned} & e^{-x}, \\ & e^{-2 x}\end{aligned}$
For a real root r_{1}, the Euler base atom is $e^{r_{1} x}$.
Atoms $=e^{-x}, e^{-2 x}$
For a root of multiplicity $\mathbf{1}$, multiply the base atom by 1 , to create one term. The number of terms created from one base atom always equals the multiplicity of the root.
$y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$
The general solution $\boldsymbol{y}_{\boldsymbol{h}}$ is written by multiplying the atom list by constants c_{1}, c_{2}.

4 Example (Second Order III) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=0$ by Euler's method, showing $y_{h}=c_{1} e^{-x} \cos 2 x+c_{2} x e^{-x} \sin 2 x$.

Solution

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+5 y=0 \\
& r^{2}+2 r+5=0 \\
& r=-1+2 i,-1-2 i
\end{aligned}
$$

Given differential equation.
Characteristic equation.
Shortcut $y^{(n)} \rightarrow r^{n}$ used.
Factorization $(r+1)^{2}+4=0$ implies $r+1= \pm 2 \sqrt{-1}= \pm 2 i$.
Base Atoms $=\begin{aligned} & e^{-x} \cos 2 x, \\ & e^{-x} \sin 2 x\end{aligned}$

Atoms $=e^{-x} \cos 2 x, e^{-x} \sin 2 x$
For complex conjugate roots $r=$ $a \pm i b$, the Euler base atoms are $e^{a x} \cos b x$ and $e^{a x} \sin b x$.
Multiply the base atoms by 1 , because the multiplicity of root $1+2 i$ is 1 . In general, multiply by $1, x, \ldots, x^{k-1}$, where k is the root multiplicity.
$y_{h}=c_{1} e^{-x} \cos 2 x+c_{2} e^{-x} \sin 2 x$ Multiply the atom list by constants c_{1}, c_{2}. This is the general solution.

5 Example (Third Order I) Solve $\boldsymbol{y}^{\prime \prime \prime}-y^{\prime}=0$ by Euler's method, showing $\boldsymbol{y}_{h}=$ $c_{1}+c_{2} e^{x}+c_{3} e^{-x}$.

Solution

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime}=0 \\
& r^{3}-r=0 \\
& r=0,1,-1
\end{aligned}
$$

Base Atoms $=1, e^{-x}, e^{x}$
Atoms $=1, e^{-x}, e^{x}$

$$
y_{h}=c_{1}+c_{2} e^{-x}+c_{3} e^{x}
$$

Given differential equation.
Characteristic equation. Use $\boldsymbol{y}^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Factorization $r(r+1)(r-1)=0$.
For a real root r_{1}, the Euler base atom is $e^{r_{1} x}$.
Each root has multiplicity 1 . Multiply each base atom by 1 . Generally, multiply by $1, x, \ldots, x^{k-1}$, where \boldsymbol{k} is the root multiplicity.
The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, c_{3}.

6 Example (Third Order II) Solve $\boldsymbol{y}^{\prime \prime \prime}-y^{\prime \prime}=0$ by Euler's method, showing $\boldsymbol{y}_{h}=$ $c_{1}+c_{2} x+c_{3} e^{x}$.

Solution

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime \prime}=0 \\
& r^{3}-r^{2}=0 \\
& r=0,0,1
\end{aligned}
$$

$$
\text { Base Atoms }=1, e^{x}
$$

$$
\text { Atoms }=1, x, e^{x}
$$

Given differential equation.
Characteristic equation. Use $y^{(n)} \rightarrow \boldsymbol{r}^{n}$.
Factorization $r^{2}(r-1)=0$.
For a real root r_{1}, the Euler base atom is $e^{r_{1} x}$. Then the Euler base atoms are $e^{0 x}, e^{1 x}$, written as $1, e^{x}$. Because $r=0$ has multiplicity 2, then multiply Euler base atom $1\left(=e^{0 x}\right)$ by powers $1, x$. Root $r=1$ with multiplicity 1 implies base atom e^{x} is multiplied by 1 . The total number of atoms created is $2+1=3$, which is the sum of the root multiplicities.
$y_{h}=c_{1}+c_{2} x+c_{3} e^{x}$ The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, c_{3}.

7 Example (Fourth Order) Solve $y^{(4)}-y^{(2)}=0$ by Euler's method, showing that the general solution is $y_{h}=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x}$.

Solution

$$
\begin{aligned}
& y^{(4)}-y^{(2)}=0 \\
& r^{4}-r^{2}=0 \\
& r=0,0,1,-1
\end{aligned}
$$

Base Atoms $=1, e^{x}, e^{-x}$

$$
\text { Atoms }=1, x, e^{x}, e^{-x}
$$

Given differential equation.
Characteristic equation. Use $y^{(n)} \rightarrow r^{n}$.
Factorization $r^{2}(r-1)(r+1)=0$.
For a real root r_{1}, the Euler base atom is $e^{r_{1} x}$. The base atoms $e^{0 x}, e^{1 x}, e^{-1 x}$ are written $1, e^{x}, e^{-x}$.
Multiply the multiplicity 2 base atom 1 by powers $1, x$ and each of the multiplicity 1 base atoms e^{x}, e^{-x} by 1. The total number of atoms created is $2+1+1=4$, which is the sum of the root multiplicities.

Multiply the atom list by constants $c_{1}, c_{2}, c_{3}, c_{4}$ and add. This is the general solution.

