Laplace Table Derivations

• $L(t^n) = \frac{n!}{s^{1+n}}$ • $L(e^{at}) = \frac{1}{s-a}$ • $L(\cos bt) = \frac{s}{s^2+b^2}$ • $L(\sin bt) = rac{b}{s^2 + b^2}$ • $L(u(t-a)) = rac{e^{-as}}{s}$ • $L(\delta(t-a)) = e^{-as}$

•
$$L(\operatorname{floor}(t/a)) = \frac{e^{-as}}{s(1 - e^{-as})}$$

• $L(\operatorname{sqw}(t/a)) = \frac{1}{s} \tanh(as/2)$
• $L(a \operatorname{trw}(t/a)) = \frac{1}{s^2} \tanh(as/2)$
• $L(t^{\alpha}) = \frac{\Gamma(1 + \alpha)}{s^{1+\alpha}}$
• $L(t^{-1/2}) = \sqrt{\frac{\pi}{s}}$

Proof of $L(t^n) = n!/s^{1+n}$ Slide 1 of 3

The first step is to evaluate L(f(t)) for $f(t) = t^0$ [n = 0 case]. The function t^0 is written as 1, but Laplace theory conventions require f(t) = 0 for t < 0, therefore f(t) is technically the **unit step function**.

$$egin{aligned} L(1) &= \int_0^\infty (1) e^{-st} dt \ &= -(1/s) e^{-st} ig|_{t=0}^{t=\infty} \ &= 1/s \end{aligned}$$

Laplace integral of f(t) = 1. Evaluate the integral. Assumed s > 0 to evaluate $\lim_{t \to \infty} e^{-st}$. Proof of $L(t^n) = n!/s^{1+n}$ Slide 2 of 3 The value of L(f(t)) for f(t) = t can be obtained by s-differentiation of the relation L(1) = 1/s, as follows. Technically, f(t) = 0 for t < 0, then f(t) is called the ramp function.

$$egin{aligned} rac{d}{ds}L(1) &= rac{d}{ds}\int_0^\infty(1)e^{-st}dt\ &= \int_0^\inftyrac{d}{ds}\left(e^{-st}
ight)dt\ &= \int_0^\infty(-t)e^{-st}dt\ &= -L(t) \end{aligned}$$

Then

$$egin{aligned} L(t) &= -rac{d}{ds}L(1) \ &= -rac{d}{ds}(1/s) \ &= 1/s^2 \end{aligned}$$

Laplace integral for f(t) = 1. Used $\frac{d}{ds} \int_{a}^{b} F dt = \int_{a}^{b} \frac{dF}{ds} dt$. Calculus rule $(e^{u})' = u'e^{u}$. Definition of L(t).

Rewrite last display. Use L(1) = 1/s. Differentiate.

Proof of
$$L(t^n) = n!/s^{1+n}$$

Slide 3 of 3 _____
This idea can be repeated to give

$$egin{aligned} L(t^2) &=& -rac{d}{ds} L(t) \ &=& L(t^2) \ &=& rac{2}{s^3}. \end{aligned}$$

The pattern is $L(t^n) = -rac{d}{ds}L(t^{n-1})$, which implies the formula

$$L(t^n)=rac{n!}{s^{1+n}}.$$

The proof is complete.

Proof of
$$L(e^{at}) = rac{1}{s-a}$$

The result follows from L(1) = 1/s, as follows.

$$egin{aligned} L(e^{at}) &= \int_0^\infty e^{at} e^{-st} dt \ &= \int_0^\infty e^{-(s-a)t} dt \ &= \int_0^\infty e^{-St} dt \ &= 1/S \ &= 1/(s-a) \end{aligned}$$

Direct Laplace transform. Use $e^A e^B = e^{A+B}$. Substitute S = s - a. Apply L(1) = 1/s. Back-substitute S = s - a.

Proof of
$$L(\cos bt) = \frac{s}{s^2 + b^2}$$
 and $L(\sin bt) = \frac{b}{s^2 + b^2}$
Slide 1 of 2
Use will be made of Euler's formula

$$e^{i heta}=\cos heta+i\sin heta,$$

usually first introduced in trigonometry. In this formula, θ is a real number in radians and $i = \sqrt{-1}$ is the complex unit.

$$e^{ibt}e^{-st}=(\cos bt)e^{-st}+i(\sin bt)e^{-st}$$

$$\int_0^\infty e^{-ibt}e^{-st}dt = \int_0^\infty (\cos bt)e^{-st}dt + i\int_0^\infty (\sin bt)e^{-st}dt$$

$$rac{1}{s-ib} = \int_0^\infty (\cos bt) e^{-st} dt \ + i \int_0^\infty (\sin bt) e^{-st} dt$$

Substitute $\theta = bt$ into Euler's formula and multiply by e^{-st} . Integrate t = 0 to $t = \infty$. Then use properties of integrals.

Evaluate the left hand side using $L(e^{at}) = 1/(s - a)$, a = ib.

Proof of
$$L(\cos bt) = \frac{s}{s^2 + b^2}$$
 and $L(\sin bt) = \frac{b}{s^2 + b^2}$
Slide 2 of 2

$$rac{1}{s-ib} = L(\cos bt) + iL(\sin bt)$$
 $rac{s+ib}{s^2+b^2} = L(\cos bt) + iL(\sin bt)$

$$rac{s}{s^2+b^2}=L(\cos bt)$$
 $rac{b}{s^2+b^2}=L(\sin bt)$

Direct Laplace transform definition.

Use complex rule $1/z = \overline{z}/|z|^2, z = A + iB, \overline{z} = A - iB, |z| = \sqrt{A^2 + B^2}.$

Extract the real part.

Extract the imaginary part.

Proof of
$$L(u(t-a))=e^{-as}/s$$

The unit step is defined by u(t-a) = 1 for $t \ge a$ and u(t-a) = 0 otherwise.

$$L(u(t-a)) = \int_0^\infty u(t-a) e^{-st} dt$$

$$egin{array}{l} &= \int_a^\infty (1) e^{-st} dt \ &= \int_a^\infty (1) e^{-s(x+a)} dx \end{array}$$

$$=e^{-as}\int_0^\infty(1)e^{-sx}dx$$

 $=e^{-as}(1/s)$

Direct Laplace transform. Assume $a \ge 0$. Because u(t-a) = 0 for $0 \le t < a$. Change variables t = x + a. Constant e^{-as} moves outside integral. Apply L(1) = 1/s.

Proof of $L(\delta(t-a)) = e^{-as}$ Slide 1 of 3

The *definition* of the Dirac impulse is a formal one, in which every occurrence of symbol $\delta(t-a)dt$ under an integrand is replaced by dH(t-a). The differential symbol du(t-a) is taken in the sense of the Riemann-Stieltjes integral. This integral is defined in Rudin's *Real analysis* for monotonic integrators $\alpha(x)$ as the limit

$$\int_a^b f(x) dlpha(x) = \lim_{N o \infty} \sum_{n=1}^N f(x_n) (lpha(x_n) - lpha(x_{n-1}))$$

where $x_0 = a$, $x_N = b$ and $x_0 < x_1 < \cdots < x_N$ forms a partition of [a, b] whose mesh approaches zero as $N \to \infty$.

The steps in computing the Laplace integral of the delta function appear below. Admittedly, the proof requires advanced calculus skills and a certain level of mathematical maturity. The reward is a fuller understanding of the Dirac symbol $\delta(x)$.

Proof of
$$L(\delta(t-a)) = e^{-as}$$

Slide 2 of 3

$$egin{aligned} L(\delta(t-a)) &= \int_0^\infty e^{-st} \delta(t-a) dt \ &= \int_0^\infty e^{-st} dH(t-a) \ &= \lim_{M o\infty} \int_0^M e^{-st} dH(t-a) \ &= e^{-sa} \end{aligned}$$

Laplace integral, a > 0assumed. Replace $\delta(t - a)dt$ by du(t - a). — a) Definition of improper integral. Explained below. Proof of $L(\delta(t-a)) = e^{-as}$ Slide 3 of 3

To explain the last step, apply the definition of the Riemann-Stieltjes integral:

$$\int_{0}^{M} e^{-st} dH(t-a) = \lim_{N o \infty} \sum_{n=0}^{N-1} e^{-st_n} (H(t_n-a) - H(t_{n-1}-a))$$

where $0 = t_0 < t_1 < \cdots < t_N = M$ is a partition of [0, M] whose mesh $\max_{1 \le n \le N} (t_n - t_{n-1})$ approaches zero as $N \to \infty$. Given a partition, if $t_{n-1} < a \le t_n$, then $u(t_n - a) - u(t_{n-1} - a) = 1$, otherwise this factor is zero. Therefore, the sum reduces to a single term e^{-st_n} . This term approaches e^{-sa} as $N \to \infty$, because t_n must approach a.

Proof of $L(\text{floor}(t/a)) = \frac{e^{-as}}{s(1 - e^{-as})}$ Slide 1 of 3

The library function floor supported in computer language C is defined by floor(x) = greatest whole integer $\leq x$, e.g., floor(5.2) = 5 and floor(-1.9) = -2. The computation of the Laplace integral of floor(t) requires ideas from infinite series, as follows.

$$egin{aligned} F(s) &= \int_0^\infty \mathsf{floor}(t) e^{-st} dt \ &= \sum_{n=0}^\infty \int_n^{n+1} (n) e^{-st} dt \end{aligned}$$

$$egin{aligned} &= \sum_{n=0}^{\infty} rac{n}{s} (e^{-ns} - e^{-ns-s}) \ &= rac{1-e^{-s}}{s} \sum_{n=0}^{\infty} n e^{-sn} \end{aligned}$$

Laplace integral definition.

Evaluate each integral.

Common factor removed.

Proof of
$$L(\operatorname{floor}(t/a)) = \frac{e^{-as}}{s(1-e^{-as})}$$

Slide 2 of 3

-as

$$egin{aligned} &=rac{x(1-x)}{s}\sum_{n=0}^{\infty}nx^{n-1}\ &=rac{x(1-x)}{s}rac{d}{dx}\sum_{n=0}^{\infty}x^n\ &=rac{x(1-x)}{s}rac{d}{dx}rac{1}{1-x}\ &=rac{x}{s(1-x)}\ &=rac{e^{-s}}{s(1-e^{-s})} \end{aligned}$$

Define $x = e^{-s}$.

Term-by-term differentiation.

Geometric series sum.

Compute the derivative, simplify.

Substitute $x = e^{-s}$.

Proof of
$$L(\text{floor}(t/a)) = \frac{e^{-as}}{s(1 - e^{-as})}$$

Slide 3 of 3

To evaluate the Laplace integral of floor(t/a), a change of variables is made.

$$egin{aligned} L(extsf{floor}(t/a)) &= \int_0^\infty extsf{floor}(t/a) e^{-st} dt \ &= a \int_0^\infty extsf{floor}(r) e^{-asr} dr \ &= a F(as) \end{aligned}$$

$$=rac{e^{-as}}{s(1-e^{-as})}$$

Laplace integral definition. Change variables t = ar. Apply the formula for F(s).

Simplify.

Proof of
$$L(\operatorname{sqw}(t/a)) = \frac{1}{s} \tanh(as/2)$$

Slide 1 of 3
The square wave defined by $\operatorname{sqw}(x) = (-1)^{\operatorname{floor}(a)}$

 $egin{aligned} &=rac{1}{s}(1-e^{-s})+rac{1}{s}(e^{-2s}-e^{-s})\ &=rac{1}{s}(1-e^{-s})^2 \end{aligned}$

The square wave defined by $sqw(x) = (-1)^{floor(x)}$ is periodic of period 2 and piecewise-defined. Let $P = \int_0^2 sqw(t)e^{-st}dt$.

$$egin{aligned} P &= \int_0^1 \mathsf{sqw}(t) e^{-st} dt + \int_1^2 \mathsf{sqw}(t) e^{-st} dt & ext{Apply } \int_a^b = \int_a^c + \int_c^b. \ &= \int_0^1 e^{-st} dt - \int_1^2 e^{-st} dt & ext{Use } \mathsf{sqw}(x) = 1 ext{ on } 0 \leq x < 1 ext{ and } \mathsf{sqw}(x) = -1 ext{ on } 1 \leq x < 2. \end{aligned}$$

Collect terms.

Proof of
$$L(sqw(t/a)) = \frac{1}{s} \tanh(as/2)$$

Slide 2 of 3 – Compute $L(sqw(t))$

$$\begin{split} L(\mathsf{sqw}(t)) &= \frac{\int_0^2 \mathsf{sqw}(t) e^{-st} dt}{1 - e^{-2s}} \\ &= \frac{1}{s} (1 - e^{-s})^2 \frac{1}{1 - e^{-2s}} \\ &= \frac{1}{s} \frac{1 - e^{-s}}{1 + e^{-s}} \\ &= \frac{1}{s} \frac{e^{s/2} - e^{-s/2}}{1 + e^{-s}} \\ &= \frac{1}{s} \frac{\sinh(s/2)}{\cosh(s/2)} \\ &= \frac{1}{s} \tanh(s/2) . \end{split}$$

Periodic function formula.

Use the computation of *P* above.

Factor $1 - e^{-2s} = (1 - e^{-s})(1 + e^{-s}).$

Multiply the fraction by $e^{s/2}/e^{s/2}$.

Use $\sinh u = (e^u - e^{-u})/2$, $\cosh u = (e^u + e^{-u})/2$.

Use $\tanh u = \sinh u / \cosh u$.

Proof of
$$L(\operatorname{sqw}(t/a)) = \frac{1}{s} \tanh(as/2)$$

Slide 3 of 3______
To complete the computation of $L(\operatorname{sqw}(t/a))$ is the

To complete the computation of $L(\operatorname{sqw}(t/a))$, a change of variables is made:

$$egin{aligned} L(\mathsf{sqw}(t/a)) &= \int_0^\infty \mathsf{sqw}(t/a) e^{-st} dt \ &= \int_0^\infty \mathsf{sqw}(r) e^{-asr}(a) dr \end{aligned}$$

Direct transform. Change variables rt/a.

$$=rac{a}{as} anh(as/2) \ =rac{1}{s} anh(as/2)$$

See $L(\mathbf{sqw}(t))$ above.

Proof of
$$L(a \operatorname{trw}(t/a)) = \frac{1}{s^2} \tanh(as/2)$$

The triangular wave is defined by $\mathsf{trw}(t) = \int_0^t \mathsf{sqw}(x) dx$.

$$egin{aligned} L(a \operatorname{trw}(t/a)) &= rac{f(0) + L(f'(t))}{s} \ &= rac{1}{s} L(\operatorname{sqw}(t/a)) \ &= rac{1}{s^2} anh(as/2) \end{aligned}$$

Let $f(t) = a \operatorname{trw}(t/a)$. Use L(f'(t)) = sL(f(t)) - f(0).

Use f(0) = 0, then use $(a \int_0^{t/a} \operatorname{sqw}(x) dx)' = \operatorname{sqw}(t/a).$

Table entry for **sqw**.

Proof of
$$L(t^{lpha}) = rac{\Gamma(1+lpha)}{s^{1+lpha}}$$

$$egin{aligned} L(t^lpha) &= \int_0^\infty t^lpha e^{-st} dt \ &= \int_0^\infty (u/s)^lpha e^{-u} du/s \ &= rac{1}{s^{1+lpha}} \int_0^\infty u^lpha e^{-u} du \ &= rac{1}{s^{1+lpha}} \Gamma(1+lpha). \end{aligned}$$

Definition of Laplace integral. Change variables u = st, du = sdt. Because *s*=constant for *u*-integration.

Because
$$\Gamma(x)\equiv\int_0^\infty u^{x-1}e^{-u}du.$$

Gamma Function

The generalized factorial function $\Gamma(x)$ is defined for x > 0 and it agrees with the classical factorial $n! = (1)(2) \cdots (n)$ in case x = n + 1 is an integer. In literature, $\alpha!$ means $\Gamma(1 + \alpha)$. For more details about the Gamma function, see Abramowitz and Stegun or maple documentation.

Proof of
$$L(t^{-1/2}) = \sqrt{rac{\pi}{s}}$$

$$egin{aligned} L(t^{-1/2}) &= rac{\Gamma(1+(-1/2))}{s^{1-1/2}} \ &= rac{\sqrt{\pi}}{\sqrt{s}} \end{aligned}$$

Apply the previous formula.

Use
$$\Gamma(1/2)=\sqrt{\pi}.$$