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Proof of L(tn) = n!/s1+n

Slide 1 of 3
The first step is to evaluate L(f(t)) for f(t) = t0 [n = 0 case]. The function t0 is
written as 1, but Laplace theory conventions require f(t) = 0 for t < 0, therefore f(t)
is technically the unit step function.

L(1) =
∫∞
0 (1)e−stdt Laplace integral of f(t) = 1.

= −(1/s)e−st|t=∞t=0 Evaluate the integral.
= 1/s Assumed s > 0 to evaluate limt→∞ e

−st.



Proof of L(tn) = n!/s1+n

Slide 2 of 3
The value of L(f(t)) for f(t) = t can be obtained by s-differentiation of the relation
L(1) = 1/s, as follows. Technically, f(t) = 0 for t < 0, then f(t) is called the
ramp function.

d

ds
L(1) = d

ds

∫∞
0 (1)e−stdt Laplace integral for f(t) = 1.

=
∫∞
0

d

ds
(e−st) dt Used d

ds

∫ b
a Fdt =

∫ b
a
dF

ds
dt.

=
∫∞
0 (−t)e−stdt Calculus rule (eu)′ = u′eu.

= −L(t) Definition of L(t).

Then

L(t) = − d

ds
L(1) Rewrite last display.

= − d

ds
(1/s) Use L(1) = 1/s.

= 1/s2 Differentiate.



Proof of L(tn) = n!/s1+n

Slide 3 of 3
This idea can be repeated to give

L(t2) = −
d

ds
L(t)

= L(t2)

=
2

s3
.

The pattern is L(tn) = − d

ds
L(tn−1), which implies the formula

L(tn) =
n!

s1+n
.

The proof is complete.



Proof of L(eat) =
1

s− a
The result follows from L(1) = 1/s, as follows.

L(eat) =
∫∞
0 eate−stdt Direct Laplace transform.

=
∫∞
0 e−(s−a)tdt Use eAeB = eA+B.

=
∫∞
0 e−Stdt Substitute S = s− a.

= 1/S Apply L(1) = 1/s.
= 1/(s− a) Back-substitute S = s− a.



Proof of L(cos bt) =
s

s2 + b2
and L(sin bt) =

b

s2 + b2
Slide 1 of 2
Use will be made of Euler’s formula

eiθ = cos θ + i sin θ,

usually first introduced in trigonometry. In this formula, θ is a real number in radians and
i =
√
−1 is the complex unit.

eibte−st = (cos bt)e−st + i(sin bt)e−st Substitute θ = bt into Euler’s
formula and multiply by e−st.∫∞

0 e−ibte−stdt =
∫∞
0 (cos bt)e−stdt

+ i
∫∞
0 (sin bt)e−stdt

Integrate t = 0 to t = ∞.
Then use properties of inte-
grals.

1

s− ib
=

∫∞
0 (cos bt)e−stdt

+ i
∫∞
0 (sin bt)e−stdt

Evaluate the left hand side us-
ing L(eat) = 1/(s − a),
a = ib.



Proof of L(cos bt) =
s

s2 + b2
and L(sin bt) =

b

s2 + b2
Slide 2 of 2

1

s− ib
= L(cos bt) + iL(sin bt) Direct Laplace transform defi-

nition.
s+ ib

s2 + b2
= L(cos bt) + iL(sin bt) Use complex rule 1/z =

z/|z|2, z = A + iB, z =
A− iB, |z| =

√
A2 +B2.

s

s2 + b2
= L(cos bt) Extract the real part.

b

s2 + b2
= L(sin bt) Extract the imaginary part.



Proof of L(u(t− a)) = e−as/s

The unit step is defined by u(t− a) = 1 for t ≥ a and u(t− a) = 0 otherwise.

L(u(t− a)) =
∫∞
0 u(t− a)e−stdt Direct Laplace transform. As-

sume a ≥ 0.
=

∫∞
a (1)e−stdt Because u(t−a) = 0 for 0 ≤

t < a.
=

∫∞
0 (1)e−s(x+a)dx Change variables t = x+ a.

= e−as
∫∞
0 (1)e−sxdx Constant e−as moves outside

integral.
= e−as(1/s) Apply L(1) = 1/s.



Proof of L(δ(t− a)) = e−as

Slide 1 of 3
The definition of the Dirac impulse is a formal one, in which every occurrence of symbol
δ(t − a)dt under an integrand is replaced by dH(t − a). The differential symbol
du(t− a) is taken in the sense of the Riemann-Stieltjes integral. This integral is defined
in Rudin’s Real analysis for monotonic integrators α(x) as the limit∫ b

a

f(x)dα(x) = lim
N→∞

N∑
n=1

f(xn)(α(xn)− α(xn−1))

where x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition of [a, b] whose
mesh approaches zero asN →∞.
The steps in computing the Laplace integral of the delta function appear below. Admittedly,
the proof requires advanced calculus skills and a certain level of mathematical maturity.
The reward is a fuller understanding of the Dirac symbol δ(x).



Proof of L(δ(t− a)) = e−as

Slide 2 of 3

L(δ(t− a)) =
∫∞
0 e−stδ(t− a)dt Laplace integral, a > 0

assumed.
=

∫∞
0 e−stdH(t− a) Replace δ(t − a)dt by

du(t− a).

= limM→∞
∫M
0 e−stdH(t− a) Definition of improper inte-

gral.
= e−sa Explained below.



Proof of L(δ(t− a)) = e−as

Slide 3 of 3
To explain the last step, apply the definition of the Riemann-Stieltjes integral:∫ M

0

e−stdH(t− a) = lim
N→∞

N−1∑
n=0

e−stn(H(tn − a)−H(tn−1 − a))

where 0 = t0 < t1 < · · · < tN = M is a partition of [0,M ] whose mesh
max1≤n≤N(tn − tn−1) approaches zero as N → ∞. Given a partition, if tn−1 <
a ≤ tn, then u(tn− a)− u(tn−1− a) = 1, otherwise this factor is zero. Therefore,
the sum reduces to a single term e−stn. This term approaches e−sa asN →∞, because
tn must approach a.



Proof of L(floor(t/a)) =
e−as

s(1− e−as)
Slide 1 of 3
The library function floor supported in computer language C is defined by floor(x) =
greatest whole integer≤ x, e.g., floor(5.2) = 5 and floor(−1.9) = −2. The com-
putation of the Laplace integral of floor(t) requires ideas from infinite series, as follows.

F (s) =
∫∞
0 floor(t)e−stdt Laplace integral definition.

=
∑∞

n=0

∫ n+1

n (n)e−stdt On n ≤ t < n + 1,
floor(t) = n.

=
∑∞

n=0

n

s
(e−ns − e−ns−s) Evaluate each integral.

=
1− e−s

s

∑∞
n=0 ne

−sn Common factor removed.



Proof of L(floor(t/a)) =
e−as

s(1− e−as)
Slide 2 of 3

=
x(1− x)

s

∑∞
n=0 nx

n−1 Define x = e−s.

=
x(1− x)

s

d

dx

∑∞
n=0 x

n Term-by-term differentiation.

=
x(1− x)

s

d

dx

1

1− x
Geometric series sum.

=
x

s(1− x)
Compute the derivative, sim-
plify.

=
e−s

s(1− e−s)
Substitute x = e−s.



Proof of L(floor(t/a)) =
e−as

s(1− e−as)
Slide 3 of 3
To evaluate the Laplace integral of floor(t/a), a change of variables is made.

L(floor(t/a)) =
∫∞
0 floor(t/a)e−stdt Laplace integral definition.

= a
∫∞
0 floor(r)e−asrdr Change variables t = ar.

= aF (as) Apply the formula for
F (s).

=
e−as

s(1− e−as)
Simplify.



Proof of L(sqw(t/a)) =
1

s
tanh(as/2)

Slide 1 of 3
The square wave defined by sqw(x) = (−1)floor(x) is periodic of period 2 and
piecewise-defined. Let P =

∫ 2

0 sqw(t)e−stdt.

P =
∫ 1

0 sqw(t)e−stdt+
∫ 2

1 sqw(t)e−stdt Apply
∫ b
a =

∫ c
a +

∫ b
c .

=
∫ 1

0 e
−stdt−

∫ 2

1 e
−stdt Use sqw(x) = 1 on 0 ≤ x <

1 and sqw(x) = −1 on 1 ≤
x < 2.

=
1

s
(1− e−s) +

1

s
(e−2s − e−s) Evaluate each integral.

=
1

s
(1− e−s)2 Collect terms.



Proof of L(sqw(t/a)) =
1

s
tanh(as/2)

Slide 2 of 3 – Compute L(sqw(t))

L(sqw(t)) =

∫ 2

0 sqw(t)e−stdt

1− e−2s
Periodic function formula.

=
1

s
(1− e−s)2

1

1− e−2s
. Use the computation of P above.

=
1

s

1− e−s

1 + e−s
. Factor

1− e−2s = (1− e−s)(1 + e−s).

=
1

s

es/2 − e−s/2

es/2 + e−s/2
. Multiply the fraction by es/2/es/2.

=
1

s

sinh(s/2)

cosh(s/2)
. Use sinhu = (eu − e−u)/2,

coshu = (eu + e−u)/2.

=
1

s
tanh(s/2). Use tanhu = sinhu/ coshu.



Proof of L(sqw(t/a)) =
1

s
tanh(as/2)

Slide 3 of 3
To complete the computation of L(sqw(t/a)), a change of variables is made:

L(sqw(t/a)) =
∫∞
0 sqw(t/a)e−stdt Direct transform.

=
∫∞
0 sqw(r)e−asr(a)dr Change variables r =

t/a.

=
a

as
tanh(as/2) See L(sqw(t)) above.

=
1

s
tanh(as/2)



Proof of L(a trw(t/a)) =
1

s2
tanh(as/2)

The triangular wave is defined by trw(t) =
∫ t
0 sqw(x)dx.

L(a trw(t/a)) =
f(0) + L(f ′(t))

s
Let f(t) = a trw(t/a). Use
L(f ′(t)) = sL(f(t))− f(0).

=
1

s
L(sqw(t/a)) Use f(0) = 0, then use

(a
∫ t/a
0 sqw(x)dx)′ = sqw(t/a).

=
1

s2
tanh(as/2) Table entry for sqw.



Proof of L(tα) =
Γ(1 + α)

s1+α

L(tα) =
∫∞
0 tαe−stdt Definition of Laplace integral.

=
∫∞
0 (u/s)αe−udu/s Change variables u = st, du = sdt.

=
1

s1+α
∫∞
0 uαe−udu Because s=constant for u-integration.

=
1

s1+α
Γ(1 + α). Because Γ(x) ≡

∫∞
0 ux−1e−udu.



Gamma Function
The generalized factorial function Γ(x) is defined for x > 0 and it agrees with the
classical factorial n! = (1)(2) · · · (n) in case x = n + 1 is an integer. In literature,
α! means Γ(1 + α). For more details about the Gamma function, see Abramowitz and
Stegun or maple documentation.

Proof of L(t−1/2) =

√
π

s

L(t−1/2) =
Γ(1 + (−1/2))

s1−1/2
Apply the previous formula.

=

√
π
√
s

Use Γ(1/2) =
√
π.


