Laplace Table Derivations
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Proof of L(t") = n!/s't"
Slide 1 of 3
The first step is to evaluate L(f(t)) for f(t) = t° [n = 0 case]. The function ¢° is
written as 1, but Laplace theory conventions require f(¢t) = 0 for t < 0, therefore f(t)
is technically the unit step function.

L(1) = ;7 (1)e *dt Laplace integral of f(t) = 1.
—(1/s)e ;= Evaluate the integral.
1/s Assumed s > 0 to evaluate lim;_, ., e*".



Proof of L(t") = n!/s't"
Slide 2 of 3
The value of L(f(t)) for f(t) = t can be obtained by s-differentiation of the relation
L(1) = 1/s, as follows. Technically, f(t) = 0 fort < 0, then f(%) is called the
ramp function.

2L(1) = £ [7F(1)e*dt Laplace integral for f(t) = 1.
= [° 4 (e~ dt Used £ [* Fdt = [, %Ldt.
=[5 (—t)e *dt Calculus rule (e*)’ = u'e".
= —L(t) Definition of L(t).
Then
L(t) = —2L(1) Rewrite last display.
= —2L(1/s) Use L(1) = 1/s.
2

=1/s Differentiate.



Proof of L(t") = n!/s't"
Slide 3 of 3

This idea can be repeated to give

d
L(t*) = ——L(#)

ds

= L(t?)
2
=

The pattern is L(t") = —< L(¢""), which implies the formula
!
L(t") = —

The proof is complete.



Proof of L(e®) =

S —a

The result follows from L(1) = 1/s, as follows.

L(e™) = [~ e“e*'dt Direct Laplace transform.
=[S e mDidg Use ete? = eAt5.
=[5 e °tdt Substitute S = s — a.
=1/8 Apply L(1) = 1/s.

=1/(s — a) Back-substitute S = s — a.



Proof of L(cos bt) =

Slide 1 of 2
Use will be made of Euler’s formula

and L(sinbt) =
82 _|_ b2 32 _|_ b2

e’ = cos 0 + isin 6,

usually first introduced in trigonometry. In this formula, 6 is a real number in radians and
t = +/—1 is the complex unit.

e e = (cos bt)e * + i(sin bt)e Substitute & = bt into Euler’s
formula and multiply by e~**.
[ e e tdt = [;°(cosbt)e *'dt Integrate t = Otot = oo.
+ 3 [, (sin bt)e *'dt Then use properties of inte-
grals.
1

— = [ "(cos bt)e *dt Evaluate the left hand side us-
s—ib ng L(e") = 1/(s — a)
+ 4 [, (sin bt)e *'dt ing’ L(e) 5= ak

a = 1b.



Proof of L(cos bt) = and L(sin bt) =
s? + b? s? + b?
Slide 2 of 2
— = L(cosbt) + 1 L(sin bt) Direct Laplace transform defi-
s —1b nition.
b
82+ - 5 L(cos bt) + ¢L(sin bt) Use complex rule 1/z =
8+ z/|z]>, 2 = A+ iB, z =
A — 1B, |z| = VA% + B2
s
= L(cos bt) Extract the real part.
s? 4+ b?
b
= L(sin bt) Extract the imaginary part.

s2 -+ b2



Proof of L(u(t — a)) = e *°/s

The unit step is defined by u(t — a) = 1fort > a and u(t — a) = O otherwise.

L(u(t —a)) = [ u(t — a)e *dt Direct Laplace transform. As-
sume a > 0.
= [, (e *dt Because u(t—a) = 0for0 <
t < a.
= [y-(1)e* "t dg Change variables t = = + a.
= e * [F(1)e **dx Constant e~?* moves outside
integral.

= e "(1/s) Apply L(1) = 1/s.



Proof of L(6(t — a)) = e
Slide 1 of 3
The definition of the Dirac impulse is a formal one, in which every occurrence of symbol
0(t — a)dt under an integrand is replaced by dH (t — a). The differential symbol
du(t — a) is taken in the sense of the Riemann-Stieltjes integral. This integral is defined
in Rudin’s Real analysis for monotonic integrators ac() as the limit

| f@da(@) = lim 3 f(@.)(@(@,) - a(@.1))

where gy = a, xy = band xy < x; < + -+ < x forms a partition of [a, b] whose
mesh approaches zero as N — o0.

The steps in computing the Laplace integral of the delta function appear below. Admittedly,
the proof requires advanced calculus skills and a certain level of mathematical maturity.
The reward is a fuller understanding of the Dirac symbol d ().



Proof of L(6(t — a)) = e **

Slide 2 of 3
L((t—a)) = [ e o(t —a)dt Laplace integral, a > 0
assumed.
= [, e *'dH(t — a) Replace 6(t — a)dt by
du(t — a).
= lim;_ oo fOM e **dH(t — a) Definition of improper inte-
gral.

= e % Explained below.



Proof of L(6(t — a)) = e~
Slide 3 of 3
To explain the last step, apply the definition of the Riemann-Stieltjes integral:

N-—-1

M
—st _ 1 —sty, _ _ .
/0 e "dH(t — a) = lim nz::oe (H(t, — a) — H(t,_, — a))

where 0 = t, < t; < .-+ < ty = M is a partition of [0, M| whose mesh
max;<,<n(tn — tn—_1) approaches zero as N — oo. Given a partition, if £,,_; <
a < t,, thenu(t, —a) —u(t,_; — a) = 1, otherwise this factor is zero. Therefore,
the sum reduces to a single term e~ *'». This term approaches e *% as IN — 00, because
t,, must approach a.



—as

e

Proof of L(floor(t/a)) =
s(1 — e29)
Slide 1 of 3
The library function floor supported in computer language C is defined by floor(xz) =
greatest whole integer < x, e.g., floor(5.2) = 5 and floor(—1.9) = —2. The com-
putation of the Laplace integral of floor(t) requires ideas from infinite series, as follows.
F(s) = J;~ floor(t)e *dt Laplace integral definition.
= 3% [ (n)e*tdt Onn < t < n+ 1,
floor(t) = n.
n
=3 ,— (e —e™™7) Evaluate each integral.
S
1—e°

= —> > ,ne " Common factor removed.
S



e—as

Proof of L(floor(t/a)) =
s(1 — e )
Slide 2 of 3
x(l—x) .
= —=3 > nx"! Define © = e™*.
S
x(l—x)d ___ : -
= Do X" Term-by-term differentiation.
S dx -
x(l—x)d 1 _ _
= Geometric series sum.
S drl — x
x
= — Compute the derivative, sim-
s(1 —x) olify.
e—S

= Substitute € = e~*°.
s(1 —e?)




e—as

Proof of L(floor(t/a)) =
s(1 — e—99)
Slide 3 of 3
To evaluate the Laplace integral of floor(¢/a), a change of variables is made.
L(floor(t/a)) = [, floor(t/a)e *dt Laplace integral definition.
= a [, floor(r)e *"dr Change variables t = ar.
= aF'(as) Apply the formula for
F(s).
e—as
— Simplify.

s(1 — e29)



1
Proof of L(sqw(t/a)) = —tanh(as/2)
Slide 1 of 3 i
The square wave defined by sqw(x) = (—l)ﬂoor(w) is periodic of period 2 and
piecewise-defined. Let P = [ sqw(t)e*!dt.

P = [, sqw(t)e*'dt + [ sqw(t)e~*'dt Apply [, = [; + ..

= [ e *tdt — [ e *tdt Usesqw(z) =10on0 < = <
land sqw(x) = —1on1l <
r < 2.
1
=—(1—e*)+—(e 2 —e®) Evaluate each integral.
S S
= —(1—e79)? Collect terms.

S



1

Proof of L(sqw(t/a)) = —tanh(as/2)
S

Slide 2 of 3 - Compute L(sqw(t))

7 sqw(t)e*tdt

L(sqw(t)) = ] . Periodic function formula.
— e S

1 1 _

= —(1 — e ®¥)>———. Use the computation of P above.
S 1 —e 2
11 —e®

= - Factor
slare l—e>=(1—e*)(1+e).

163/2 _ 6—3/2 . . B /2
=— peys Multiply the fraction by e®*/? /e®/>.
1 sinh(s/2
— (s/ ) Use sinhu = (e* — e™)/2,
scosh(s/2) coshu = (e* 4+ e™™)/2.

1
= —tanh(s/2). Use tanh © = sinh u/ cosh w.
S



Proof of L(sqw(t/a)) = é tanh(as/2)

Slide 3 of 3
To complete the computation of L(sqw(t/a)), a change of variables is made:
L(sqw(t/a)) = [;” sqw(t/a)e *dt Direct transform.
= [y sqw(r)e *"(a)dr Change variables r =
t/a.
a
= — tanh(as/2) See L(sqw(t)) above.
as

1
= —tanh(as/2)
S



1
Proof of L(a trw(t/a)) = — tanh(as/2)
s

The triangular wave is defined by trw(t) = f(f sqw(x)dx.

L(atrw(t/a)) = f(0) +8L(f/(t)) Let f(t) = atrw(t/a). Use

L(f'(t)) = sL(f(t)) — £(0).

= 1L(sqw(t/a,)) Use f(0) = 0, then use
S (a [V sqw(x)dxz) = sqw(t/a).

1
== tanh(as/2) Table entry for sqw.



'l+ o)

Proof of L(t*) =
Sl—i—a
L(t*) = [~ t*e*tdt Definition of Laplace integral.
= [; (u/s)*e "du/s Change variables u = st, du = sdt.
1
— [ ue "du Because s=constant for u-integration.
81—|—a 0
— I'(1+ ). Because I'(z) = [, u” 'e “du.



Gamma Function

The generalized factorial function T'(x) is defined for x > 0 and it agrees with the
classical factorial n! = (1)(2) -+ - (n) incase « = n + 1 is an integer. In literature,
a! means I'(1 4+ ). For more details about the Gamma function, see Abramowitz and
Stegun or maple documentation.

71'
Proof of L(t~1/%) = ,/—
s

'+ (=1/2))

gl—1/2

— Use I'(1/2) = /.

L(t™'?) =

Apply the previous formula.



