Basic Laplace Theory

- Laplace Integral
- Direct Laplace Transform
- A First LaPlace Table
- A Minimal LaPlace Table
- Forward LaPlace Table
- Backward LaPlace Table
- Some Transform Rules
- Lerch's Cancelation Law and the Fundamental Theorem of Calculus
- Illustration in Calculus Notation
- Illustration Translated to Laplace L-notation

Laplace Integral _____

The integral

$$\int_0^\infty g(t) e^{-st} dt$$

is called the Laplace integral of the function g(t). It is defined by

$$\int_0^\infty g(t) e^{-st} dt \equiv \lim_{N o \infty} \int_0^N g(t) e^{-st} dt$$

and it depends on variable s. The ideas will be illustrated for g(t) = 1, g(t) = t and $g(t) = t^2$. Results appear in Table 1 *infra*.

Laplace Integral or Direct Laplace Transform

The Laplace integral or the direct Laplace transform of a function f(t) defined for $0 \le t < \infty$ is the ordinary calculus integration problem

$$\int_0^\infty f(t) e^{-st} dt.$$

The Laplace integrator is $dx = e^{-st} dt$ instead of the usual dt.

A Laplace integral is succinctly denoted in science and engineering literature by the symbol

L(f(t)),

which abbreviates

$$\int_E (f(t)) dx,$$

with set $E=[0,\infty)$ and Laplace integrator $dx=e^{-st}dt.$

A First LaPlace Table

 $\int_{0}^{\infty} (1) e^{-st} dt = -(1/s) e^{-st} |_{t=0}^{t=\infty}$ = 1/s $\int_0^\infty(t)e^{-st}dt=\int_0^\infty-rac{d}{ds}(e^{-st})dt$ $=-rac{d}{ds}\int_0^\infty (1)e^{-st}dt$ $=-\frac{d}{ds}(1/s)$ $= 1/s^{2}$ $\int_0^\infty (t^2) e^{-st} dt = \int_0^\infty -rac{d}{ds} (te^{-st}) dt$ $=-rac{d}{ds}\int_0^\infty(t)e^{-st}dt$ $= -\frac{d}{ds}(1/s^2)$ $= 2/s^{3}$

Laplace integral of g(t) = 1. Assumed s > 0. Laplace integral of g(t) = t. Use $\int \frac{d}{ds}F(t,s)dt = \frac{d}{ds}\int F(t,s)dt$. Use L(1) = 1/s. Differentiate. Laplace integral of $g(t) = t^2$.

Use
$$L(t)=1/s^2$$
.

Summary

Table 1. Laplace integral $\int_0^\infty g(t) e^{-st} dt$ for g(t) = 1, t and t^2 .

$$\int_0^\infty (1) e^{-st} dt = rac{1}{s}, \qquad \int_0^\infty (t) e^{-st} dt = rac{1}{s^2}, \qquad \int_0^\infty (t^2) e^{-st} dt = rac{2}{s^3}.$$

In summary, $L(t^n) = rac{n!}{s^{1+n}}$

A Minimal Laplace Table _____

Solving differential equations by Laplace methods requires keeping a smallest table of Laplace integrals available, usually memorized. The last three entries will be verified later.

Table 2. A minimal Laplace integral table with L-notation

$\int_0^\infty (t^n) e^{-st}dt = rac{n!}{s^{1+n}}$	$L(t^n)=rac{n!}{s^{1+n}}$
$\int_0^\infty (e^{at}) e^{-st}dt = rac{1}{s-a}$	$L(e^{at}) = rac{1}{s-a}$
$\int_0^\infty (\cos bt) e^{-st} dt = rac{s}{s^2+b^2}$	$L(\cos bt)=rac{s}{s^2+b^2}$
$\int_0^\infty (\sin bt) e^{-st}dt = rac{b}{s^2+b^2}$	$L(\sin bt) = rac{b}{s^2+b^2}$

Forward Laplace Table ____

The forward table finds the Laplace integral L(f(t)) when f(t) is a linear combination of Euler solution atoms. Laplace calculus rules apply to find the Laplace integral of f(t) when it is not in this short table.

Function $f(t)$	Laplace Integral $L(f(t))$
1	$\frac{1}{s}$
t^n	$rac{n!}{s^{1+n}}$
e^{at}	$\frac{1}{s-a}$
$\cos bt$	$rac{s}{s^2+b^2}$
$\sin bt$	$rac{b}{s^2+b^2}$

Table 3. Forward Laplace integral table

Backward Laplace Table

The backward table finds f(t) from a Laplace integral L(f(t)) expression. Always, f(t) is a linear combinations of Euler solution atoms. The Laplace calculus rules apply to find f(t) when it is does not appear in this short table.

Laplace Integral $L(f(t))$	f(t)
$\frac{1}{2}$	1
s 1	+ <i>n</i>
$\frac{1}{s^{1+n}}$	$\frac{t^n}{n!}$
	e^{at}
s-a	Ŭ
$rac{s}{s^2+b^2}$	$\cos bt$
1	$\sin bt$
$\overline{s^2+b^2}$	b

Table 4. Backward Laplace integral table

Some Transform Rules _____

$$L(f(t) + g(t)) = L(f(t)) + L(g(t))$$

L(cf(t))=cL(f(t))

$$L(y'(t)) = sL(y(t)) - y(0)$$

The integral of a sum is the sum of the integrals.

Constants c pass through the integral sign.

The t-derivative rule, or integration by parts.

Lerch's Cancelation Law and the Fundamental Theorem of Calculus _____

L(y(t)) = L(f(t)) implies y(t) = f(t) Lerch's cancelation law.

Lerch's cancelation law in integral form is

(1)
$$\int_0^\infty y(t)e^{-st}dt = \int_0^\infty f(t)e^{-st}dt \quad \text{implies} \quad y(t) = f(t).$$

Quadrature Methods

Lerch's Theorem is used *last* in Laplace's quadrature method. In Newton calculus, the quadrature method uses the Fundamental Theorem of Calculus *first*. The two theorems have a similar use, to *isolate* the solution y of the differential equation.

An illustration

Laplace's method will be applied to solve the initial value problem

$$y' = -1, \quad y(0) = 0.$$

Illustration Details _____

Table 5. Laplace method details for y' = -1, y(0) = 0.

$$\begin{split} y'(t)e^{-st}dt &= -e^{-st}dt & \text{Multiply } y' &= -1 \text{ by } \\ \int_0^\infty y'(t)e^{-st}dt &= \int_0^\infty -e^{-st}dt & \text{Integrate } t &= 0 \text{ to } \\ \int_0^\infty y'(t)e^{-st}dt &= -1/s & \text{Use Table 1.} \\ s\int_0^\infty y(t)e^{-st}dt - y(0) &= -1/s & \text{Integrate by parts on } \\ \int_0^\infty y(t)e^{-st}dt &= -1/s^2 & \text{Use } y(0) &= 0 \text{ and } \\ \int_0^\infty y(t)e^{-st}dt &= \int_0^\infty (-t)e^{-st}dt & \text{Use Table 1.} \\ y(t) &= -t & \text{Apply Lerch's cancelation law.} \end{split}$$

by

to

Translation to *L***-notation**

Table 6. Laplace method L-notation details for y' = -1, y(0) = 0 translated from Table 5.

$L(y^{\prime}(t))=L(-1)$	Apply L across $y'=-1,$ or multiply $y'=-1$ by $e^{-st}dt,$ integrate $t=0$ to $t=\infty.$
$L(y^{\prime}(t))=-1/s$	Use Table 1 forwards.
sL(y(t))-y(0)=-1/s	Integrate by parts on the left.
$L(y(t)) = -1/s^2$	Use $m{y}(0)=0$ and divide.
L(y(t)) = L(-t)	Apply Table 1 backwards.
y(t)=-t	Invoke Lerch's cancelation law.

1 Example (Laplace method) Solve by Laplace's method the initial value problem y' = 5 - 2t, y(0) = 1 to obtain $y(t) = 1 + 5t - t^2$.

Solution: Laplace's method is outlined in Tables 5 and 6. The *L*-notation of Table 6 will be used to find the solution $y(t) = 1 + 5t - t^2$.

$$\begin{split} L(y'(t)) &= L(5-2t) & H \\ &= 5L(1)-2L(t) & H \\ &= \frac{5}{s} - \frac{2}{s^2} & H \\ sL(y(t)) - y(0) &= \frac{5}{s} - \frac{2}{s^2} & H \\ L(y(t)) &= \frac{1}{s} + \frac{5}{s^2} - \frac{2}{s^3} & H \\ L(y(t)) &= L(1) + 5L(t) - L(t^2) & H \\ &= L(1+5t-t^2) & H \\ y(t) &= 1 + 5t - t^2 & H \\ \end{split}$$

Apply L across y' = 5 - 2t. Linearity of the transform.

Use Table 1 forwards.

Apply the t-derivative rule.

Use y(0) = 1 and divide.

t²) Use Table 1 backwards.
 Linearity of the transform.
 Invoke Lerch's cancelation law.

2 Example (Laplace method) Solve by Laplace's method the initial value problem y'' = 10, y(0) = y'(0) = 0 to obtain $y(t) = 5t^2$.

Solution: The *L*-notation of Table 6 will be used to find the solution $y(t) = 5t^2$.

$$egin{aligned} L(y''(t)) &= L(10) \ sL(y'(t)) - y'(0) &= L(10) \ s[sL(y(t)) - y(0)] - y'(0) &= L(10) \ s^2 L(y(t)) &= 10 L(1) \ L(y(t)) &= rac{10}{s^3} \ L(y(t)) &= L(5t^2) \ y(t) &= 5t^2 \end{aligned}$$

Apply *L* across y'' = 10. Apply the *t*-derivative rule to y'. Repeat the *t*-derivative rule, on *y*. Use y(0) = y'(0) = 0.

Use Table 1 forwards. Then divide.

Use Table 1 backwards.

Invoke Lerch's cancelation law.