The Integrating Factor Method for a Linear Differential Equation y' + p(x)y = r(x)

Contents

- Superposition $oldsymbol{y}=oldsymbol{y}_h+oldsymbol{y}_p$
- Variation of Parameters
- Integrating Factor Identity
- The Integrating Factor Method
- Example $xy' + y = x^2$.

Superposition

Consider the homogeneous equation

$$(1) y' + p(x)y = 0$$

and the non-homogeneous equation

$$(2) y' + p(x)y = r(x)$$

where p and r are continuous in an interval J.

Theorem 1 (Superposition)

The general solution of the non-homogeneous equation (2) is given by

$$y = y_h + y_p$$

where y_h is the general solution of homogeneous equation (1) and y_p is a particular solution of non-homogeneous equation (2).

Variation of Parameters

The initial value problem

(3)
$$y' + p(x)y = r(x), \quad y(x_0) = 0,$$

where p and r are continuous in an interval containing $x=x_0$, has a particular solution

(4)
$$y(x) = e^{-\int_{x_0}^x p(s)ds} \int_{x_0}^x r(t) e^{\int_{x_0}^t p(s)ds} dt.$$

Formula (4) is called variation of parameters, for historical reasons.

The formula determines a particular solution y_p which can be used in the superposition identity $y = y_h + y_p$.

While (4) has some appeal, applications use the **integrating factor method**, which is developed with indefinite integrals for computational efficiency. No one memorizes (4); they remember and study the *method*.

Integrating Factor Identity

The technique called the integrating factor method uses the replacement rule

(5) Fraction
$$\frac{(YW)'}{W}$$
 replaces $Y' + p(x)Y$, where $W = e^{\int p(x)dx}$.

The factor $W = e^{\int p(x)dx}$ in (5) is called an integrating factor. Details Let $W = e^{\int p(x)dx}$. Then W' = pW, by the rule $(e^x)' = e^x$, the chain rule and the fundamental theorem of calculus $(\int p(x)dx)' = p(x)$.

Let's prove (WY)'/W = Y' + pY. The derivative product rule implies

$$(YW)' = Y'W + YW' \ = Y'W + YpW \ = (Y' + pY)W.$$

Divide by W. The proof is complete.

The Integrating Factor Method

Standard	Rewrite $y' = f(x,y)$ in the form $y' + p(x)y = r(x)$ where
Form	p, r are continuous. The method applies only in case this is
	possible.
Find W	Find a simplified formula for $W = e^{\int p(x) dx}$. The antiderivative
	$\int p(x) dx$ can be chosen conveniently.
	$(\boldsymbol{u}\boldsymbol{W})'$
Prepare for	Obtain the new equation $\frac{r}{r} = r$ by replacing the left side
Quadrature	of $y' + p(x)y = r(x)$ by equivalence (5).
Method of	Clear fractions to obtain $(yW)' = rW$. Apply the method of
Quadrature	quadrature to get $yW = \int r(x)W(x)dx + C$. Divide by W
	to isolate the explicit solution $y(x)$.

Equation (5) is central to the method, because it collapses the two terms y' + py into a single term (yW)'/W; the method of quadrature applies to (yW)' = rW. Literature calls the exponential factor W an integrating factor and equivalence (5) a factorization of y' + p(x)y.

Integrating Factor Example

Example. Solve the linear differential equation $xy' + y = x^2$.

Solution: The standard form of the linear equation is

$$y'+rac{1}{x}y=x.$$

Let

$$W=e^{\int rac{1}{x}dx}=x$$

and replace the LHS of the differential equation by $(yW)^{\prime}/W$ to obtain the quadrature equation

$$(yW)' = xW$$
 equivalent to $(yx)' = x^2$.

Apply quadrature to this equation, then divide by W. The answer is

$$y=rac{x^2}{3}+rac{C}{x}$$