Constant Coefficient Equations

Theorem 1 (First Order Recipe)

Let a and b be constants, $a \neq 0$. Let r_1 denote the root of ar + b = 0. Then $y = c_1 e^{r_1 x}$ is the general solution of the first order equation

$$ay' + by = 0.$$

Theorem 2 (Second Order Recipe)

Let $a \neq 0$, b and c be real constants. Let r_1 , r_2 be the two roots of $ar^2 + br + c = 0$, real or complex. If complex, then let $r_1 = \overline{r_2} = \alpha + i\beta$ with $\beta > 0$. Consider the following three cases, organized by the sign of the discriminant $D = b^2 - 4ac$:

- D > 0 (Real distinct roots) $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$. D = 0 (Real equal roots) $y_1 = e^{r_1 x}$, $y_2 = x e^{r_1 x}$. D < 0 (Conjugate roots) $y_1 = e^{\alpha x} \cos(\beta x)$ $y_2 = e^{\alpha x} \sin(\beta x)$
- D < 0 (Conjugate roots) $y_1 = e^{\alpha x} \cos(\beta x), \quad y_2 = e^{\alpha x} \sin(\beta x).$

Then y_1, y_2 are two solutions of

$$ay'' + by' + cy = 0$$

and all solutions are given by $y = c_1y_1 + c_2y_2$, where c_1 , c_2 are arbitrary constants.

Theorem 3 (Existence-Uniqueness)

Let the coefficients a(x), b(x), c(x), f(x) be continuous on an interval J containing $x = x_0$. Assume $a(x) \neq 0$ on J. Let y_0 and y_1 be constants. The initial value problem

$$egin{aligned} a(x)y''+b(x)y'+c(x)y&=f(x),\ y(x_0)&=y_0, \quad y'(x_0)&=y_1 \end{aligned}$$

has a unique solution y(x) defined on J.

Theorem 4 (Superposition)

The homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0 has the superposition property:

If y_1 , y_2 are solutions and c_1 , c_2 are constants, then the combination $y(x) = c_1y_1(x) + c_2y_2(x)$ is a solution.

Theorem 5 (Homogeneous Structure)

The homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0 has a general solution of the form

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x),$$

where c_1 , c_2 are arbitrary constants and $y_1(x)$, $y_2(x)$ are solutions.

Theorem 6 (Non-Homogeneous Structure)

The non-homogeneous equation a(x)y'' + b(x)y' + c(x)y = f(x) has general solution

$$y(x) = y_h(x) + y_p(x),$$

where

 $y_h(x)$ is the general solution of the homogeneous equation a(x)y'' + b(x)y' + c(x)y = 0, and $y_p(x)$ is a particular solution of the nonhomogeneous equation a(x)y'' + b(x)y' + c(x)y = f(x).