Differential Equations 2280

Sample Midterm Exam 3 with Solutions
Exam Date: 24 April 2015 at 12:50pm
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$. Problems below cover the possibilities, but the exam day content will be much less, as was the case for Exams 1, 2.

Chapter 3

1. (Linear Constant Equations of Order n)
(a) Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=1-x$. Show all steps in variation of parameters. Check the answer by quadrature.
(b) A particular solution of the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (2 t)$ happens to be $x(t)=11 \cos 2 t+$ $e^{-t} \sin \sqrt{11} t-\sqrt{11} \sin 2 t$. Assume m, c, k all positive. Find the unique periodic steady-state solution x_{SS}.
(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular solutions $2 e^{3 x}+4 x$ and $x e^{3 x}$. Write a formula for the general solution.
(d) Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+64 x=40 \cos (4 t), \quad x(0)=x^{\prime}(0)=0 .
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, don't convert to phase-amplitude form.
(e) Write the solution $x(t)$ of

$$
x^{\prime \prime}(t)+25 x(t)=180 \sin (4 t), \quad x(0)=x^{\prime}(0)=0
$$

as the sum of two harmonic oscillations of different natural frequencies.

To save time, don't convert to phase-amplitude form.

(f) Find the steady-state periodic solution for the forced spring-mass system $x^{\prime \prime}+2 x^{\prime}+2 x=5 \sin (t)$.
(g) Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+4 x(t)=0$, which represents a damped spring-mass system with $m=5$, $c=2, k=4$, determine if the equation is over-damped, critically damped or under-damped.
To save time, do not solve for $x(t)$!
(h) Determine the practical resonance frequency ω for the electric current equation

$$
2 I^{\prime \prime}+7 I^{\prime}+50 I=100 \omega \cos (\omega t) .
$$

(i) Given the forced spring-mass system $x^{\prime \prime}+2 x^{\prime}+17 x=82 \sin (5 t)$, find the steady-state periodic solution.
(j) Let $f(x)=x^{3} e^{1.2 x}+x^{2} e^{-x} \sin (x)$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation of least order which has $f(x)$ as a solution. To save time, do not expand the polynomial and do not find the differential equation.

Use this page to start your solution.

Chapters 4 and 5

2. (Systems of Differential Equations)

Background. Let A be a real 3×3 matrix with eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right),\left(\lambda_{2}, \mathbf{v}_{2}\right),\left(\lambda_{3}, \mathbf{v}_{3}\right)$. The eigenanalysis method says that the 3×3 system $\mathbf{x}^{\prime}=A \mathbf{x}$ has general solution

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}
$$

Background. Let A be an $n \times n$ real matrix. The method called Cayley-Hamilton-Ziebur is based upon the result

The components of solution \mathbf{x} of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ are linear combinations of Euler solution atoms obtained from the roots of the characteristic equation $|A-\lambda I|=0$.

Background. Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is called a fundamental matrix. It is known that the general solution is $\mathbf{x}(t)=\Phi(t) \mathbf{c}$, where \mathbf{c} is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t),|\Phi(0)| \neq 0$.
(a) Display eigenanalysis details for the 3×3 matrix

$$
A=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

then display the general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) The 3×3 triangular matrix

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

represents a linear cascade, such as found in brine tank models. Using the linear integrating factor method, starting with component $x_{3}(t)$, find the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(c) The exponential matrix $e^{A t}$ is defined to be a fundamental matrix $\Psi(t)$ selected such that $\Psi(0)=I$, the $n \times n$ identity matrix. Justify the formula $e^{A t}=\Phi(t) \Phi(0)^{-1}$, valid for any fundamental matrix $\Phi(t)$.
(d) Let A denote a 2×2 matrix. Assume $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ has scalar general solution $x_{1}=c_{1} e^{t}+c_{2} e^{2 t}$, $\left.x_{2}=\left(c_{1}-c_{2}\right) e^{t}+2 c_{1}+c_{2}\right) e^{2 t}$, where c_{1}, c_{2} are arbitrary constants. Find a fundamental matrix $\Phi(t)$ and then go on to find $e^{A t}$ from the formula in part (c) above.
(e) Let A denote a 2×2 matrix and consider the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Assume fundamental matrix $\Phi(t)=\left(\begin{array}{rr}e^{t} & e^{2 t} \\ 2 e^{t} & -e^{2 t}\end{array}\right)$. Find the 2×2 matrix A.
(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=3 x+y, \quad y^{\prime}=-x+3 y
$$

which has complex eigenvalues $\lambda=3 \pm i$. Show the details of the method, then go on to report a fundamental matrix $\Phi(t)$.
Remark. The vector general solution is $\mathbf{x}(t)=\Phi(t) \mathbf{c}$, which contains no complex numbers. Reference: 4.1, Examples 6,7,8.

Use this page to start your solution.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node.

$$
\vec{u}^{\prime}=\left(\begin{array}{rr}
3 & 4 \\
-2 & -1
\end{array}\right) \vec{u}
$$

(b) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node.

$$
\vec{u}^{\prime}=\left(\begin{array}{ll}
-3 & 2 \\
-4 & 1
\end{array}\right) \vec{u}
$$

(c) Consider the nonlinear dynamical system

$$
\begin{aligned}
x^{\prime} & =x-2 y^{2}-y+32 \\
y^{\prime} & =2 x^{2}-2 x y
\end{aligned}
$$

An equilibrium point is $x=4, y=4$. Compute the Jacobian matrix $A=J(4,4)$ of the linearized system at this equilibrium point.
(d) Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=-x-2 y^{2}-y+32 \\
& y^{\prime}=2 x^{2}+2 x y
\end{aligned}
$$

An equilibrium point is $x=-4, y=4$. Compute the Jacobian matrix $A=J(-4,4)$ of the linearized system at this equilibrium point.
(e) Consider the nonlinear dynamical system $\left\{\begin{aligned} x^{\prime} & =-4 x+4 y+9-x^{2}, \\ y^{\prime} & =3 x-3 y .\end{aligned}\right.$

At equilibrium point $x=3, y=3$, the Jacobian matrix is $A=J(3,3)=\left(\begin{array}{rr}-10 & 4 \\ 3 & -3\end{array}\right)$.
(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear system $\frac{d}{d t} \vec{u}=A \vec{u}$.
(2) Apply the Pasting Theorem to classify $x=3, y=3$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75\%.
(f) Consider the nonlinear dynamical system $\left\{\begin{array}{l}x^{\prime}=-4 x-4 y+9-x^{2}, \\ y^{\prime}=3 x+3 y .\end{array}\right.$

At equilibrium point $x=3, y=-3$, the Jacobian matrix is $A=J(3,-3)=\left(\begin{array}{rr}-10 & -4 \\ 3 & 3\end{array}\right)$.
Linearization. Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$.
Nonlinear System. Apply the Pasting Theorem to classify $x=3, y=-3$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.

