Differential Equations 2280 Midterm Exam 3 Exam Date: 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) [30%] Find by variation of parameters a particular solution y_p for the equation $y'' = x + x^2$. Show all steps in variation of parameters. Check the answer by quadrature.

Chapter 3

(b) [40%] Find the **Beats** solution for the forced undamped spring-mass problem

$$x'' + 256x = 247\cos(3t), \quad x(0) = x'(0) = 0.$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.

Chapter 3

(c) [30%] Let $f(x) = x^2 \cos(x) - x(e^x + 1)$. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that y = f(x) is a solution.

Use this page to start your solution.

2. (Systems of Differential Equations)

(a) [30%] Assume a 3×3 matrix A has eigenvalues $\lambda = 3, 4, 5$. State the Cayley-Hamilton-Ziebur theorem for this example. Then display a solution formula for the vector solution $\vec{u}(t)$ to system $\frac{d}{dt}\vec{u} = A\vec{u}$, inserting what is known what is known from the eigenvalue information (supplied above).

(b) [40%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ where the 4×4 triangular matrix is

$$A = \left(\begin{array}{rrrrr} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{array}\right).$$

Part 1. Use the linear integrating factor method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$.

(b) [40%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$ where the 4×4 triangular matrix is

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Part 2. Laplace's method applies to this example. Explain in a paragraph of text how to apply Laplace's method to this 4×4 system. Don't use Laplace tables and don't find the solution! The explanation can use scalar equations or the vector-matrix equation $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t)$.

Background for (c). Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}'(t) = A\vec{x}(t)$ is called a **fundamental matrix**. It is known that the general solution is $\vec{x}(t) = \Phi(t)\vec{c}$, where \vec{c} is a column vector of arbitrary constants c_1, \ldots, c_n . An alternate and widely used definition of fundamental matrix is $\Phi'(t) = A\Phi(t), |\Phi(0)| \neq 0$.

(c) [30%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$x' = x + 5y, \quad y' = -5x + y,$$

which has complex eigenvalues $\lambda = 1 \pm 5i$.

- **Part** 1. Show the details of the method, finally displaying formulas for x(t), y(t).
- **Part 2**. Report a fundamental matrix $\Phi(t)$.
- **Part 3**. Use **Part 2** to find the exponential matrix e^{At} .

Use this page to start your solution.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)

(a) [20%] Determine whether the unique equilibrium $\vec{u} = \vec{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u} = \vec{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$\frac{d}{dt}\vec{u} = \left(\begin{array}{cc} -1 & 1\\ -2 & 1 \end{array}\right)\vec{u}$$

(b) [30%] Consider the nonlinear dynamical system

$$\begin{array}{rcl} x' &=& x - 2y^2 - 2y + 32, \\ y' &=& 2x(x - 2y). \end{array}$$

An equilibrium point is x = -8, y = -4. Compute the Jacobian matrix of the linearized system at this equilibrium point.

(c) [30%] Consider the soft nonlinear spring system $\begin{cases} x' = y, \\ y' = -5x - 2y + \frac{5}{4}x^3. \end{cases}$

(1) Determine the stability at $t = \infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u} = \vec{0}$ for the **linear dynamical system** $\frac{d}{dt}\vec{u} = A\vec{u}$, where A is the Jacobian matrix of this system at x = 2, y = 0.

(2) Apply the Pasting Theorem to classify x = 2, y = 0 as a saddle, center, spiral or node for the **nonlinear dynamical system**. Discuss all details of the application of the theorem. *Details count 75%*.

(d) [20%] State the hypotheses and the conclusions of the *Pasting Theorem* used in part (c) above. Accuracy and completeness expected.

Use this page to start your solution.