Differential Equations 2280

Midterm Exam 3

Exam Date: 14 April 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Chapter 3

1. (Linear Constant Equations of Order n)
(a) $[30 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=x+x^{2}$. Show all steps in variation of parameters. Check the answer by quadrature.

Chapter 3

(b) $[40 \%]$ Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+256 x=247 \cos (3 t), \quad x(0)=x^{\prime}(0)=0 .
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert your answer.

Chapter 3

(c) $[30 \%]$ Let $f(x)=x^{2} \cos (x)-x\left(e^{x}+1\right)$. Find the characteristic equation of a linear homogeneous scalar differential equation of least order such that $y=f(x)$ is a solution.

Use this page to start your solution.

Chapters 4 and 5

2. (Systems of Differential Equations)
(a) $[30 \%]$ Assume a 3×3 matrix A has eigenvalues $\lambda=3,4,5$. State the Cayley-Hamilton-Ziebur theorem for this example. Then display a solution formula for the vector solution $\vec{u}(t)$ to system $\frac{d}{d t} \vec{u}=A \vec{u}$, inserting what is known what is known from the eigenvalue information (supplied above).

Chapters 4 and 5

(b) [40\%] A linear cascade, typically found in brine tank models, satisfies $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ where the 4×4 triangular matrix is

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right) .
$$

Part 1. Use the linear integrating factor method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.

Chapters 4 and 5

(b) $[40 \%]$ A linear cascade, typically found in brine tank models, satisfies $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$ where the 4×4 triangular matrix is

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Part 2. Laplace's method applies to this example. Explain in a paragraph of text how to apply Laplace's method to this 4×4 system. Don't use Laplace tables and don't find the solution! The explanation can use scalar equations or the vector-matrix equation $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.

Chapters 4 and 5

Background for (c). Let A be an $n \times n$ real matrix. An augmented matrix $\Phi(t)$ of n independent solutions of $\vec{x}^{\prime}(t)=A \vec{x}(t)$ is called a fundamental matrix. It is known that the general solution is $\vec{x}(t)=\Phi(t) \vec{c}$, where \vec{c} is a column vector of arbitrary constants c_{1}, \ldots, c_{n}. An alternate and widely used definition of fundamental matrix is $\Phi^{\prime}(t)=A \Phi(t),|\Phi(0)| \neq 0$.
(c) $[30 \%]$ The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=x+5 y, \quad y^{\prime}=-5 x+y,
$$

which has complex eigenvalues $\lambda=1 \pm 5 i$.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.
Part 3. Use Part 2 to find the exponential matrix $e^{A t}$.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) $[20 \%]$ Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\frac{d}{d t} \vec{u}=\left(\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right) \vec{u}
$$

(b) $[30 \%]$ Consider the nonlinear dynamical system

$$
\begin{aligned}
x^{\prime} & =x-2 y^{2}-2 y+32 \\
y^{\prime} & =2 x(x-2 y)
\end{aligned}
$$

An equilibrium point is $x=-8, y=-4$. Compute the Jacobian matrix of the linearized system at this equilibrium point.

(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$, where A is the Jacobian matrix of this system at $x=2, y=0$.
(2) Apply the Pasting Theorem to classify $x=2, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75\%.
(d) [20\%] State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above. Accuracy and completeness expected.

Use this page to start your solution.

