Differential Equations 2280
 Midterm Exam 3
 Exam Date: 22 April 2016 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count $1 / 4$.

Chapter 3

10

1. (Linear Constant Equations of Order n)
(a) $[30 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=x^{2}$. Show all steps in variation of parameters. Check the answer by quadrature.
A (b) [40\%] Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+256 x=231 \cos (5 t), \quad x(0)=x^{\prime}(0)=0 .
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don ${ }^{\prime}$ c convert to phase-amplitude form.
A (c) [20\%] Given $m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0$, which represents a damped spring-mass system, assume $m=9, c=24, k=16$. Determine if the equation is over-damped, critically damped or under-damped. To save time, do not solve for $x(t)$.
\%

$$
\begin{aligned}
& 2 I^{\prime \prime}+7 I^{\prime}+50 I=500 \sin (\omega t) . \\
& \begin{array}{rl}
\text { (aa) } y^{\prime \prime}=x^{2} & f(x)=x^{2} \\
y^{\prime \prime}=0 \rightarrow r^{2}=0 \rightarrow y_{n}=c_{1}+c_{2} x \\
y_{1}=1 & \uparrow \\
y_{2}=x
\end{array} \quad W=\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|=1 \quad y=-y_{1} \int \frac{y_{2} f(x)}{w} d x \\
& y=-1 \int \frac{x \cdot x^{2}}{1} d x+x \int \frac{1 \cdot x^{2}}{1} d x=-\int x^{3} d x+x \int x^{2} d x=-\frac{x^{4}}{4}+\frac{x \cdot x^{3}}{3} \\
& \text { check: } \iint x^{2}=\int \frac{x^{3}}{3}=\frac{x^{4}}{12} \sqrt{ } \\
& =\frac{-x^{4}}{4}+\frac{x^{4}}{3} \\
& =-\frac{3 x^{4}}{12}+\frac{4 x^{4}}{12} \\
& \frac{x^{4}}{12}
\end{aligned}
$$

Use this page to start your solution.
b) $x^{\prime \prime}+256 x=23 \mid \cos 5 t \quad x(0)=x^{\prime}(0)=0$
trial solution:

$$
\begin{aligned}
& x=d_{1} \cos 5 t+d_{2} \sin 5 t \\
& x^{\prime}=-5 d_{1} \sin 5 t+5 d_{2} \cos 5 t \\
& x^{\prime \prime}=-25 d_{1} \cos 5 t-25 d_{2} \sin 5 t
\end{aligned}
$$

$$
\begin{aligned}
& -25 d_{1} \cos 5 t-25 d_{2} \sin 5 t+256 d_{1} \cos 5 t+256 d_{2} \sin 5 t=231 \cos 5 t \\
& 231 d_{1} \cos 5 t+231 d_{2} \sin 5 t=231 \cos 5 t \\
& \Rightarrow d_{1}=1, d_{2}=0
\end{aligned}
$$

$$
x=\cos 5 t
$$

homogeneous:

$$
\begin{aligned}
& x^{\prime \prime}+256 x=0 \rightarrow r^{2}+256=0 \\
& \quad r= \pm 16 i \\
& x_{h}=c_{1} \cos 16 t+c_{2} \sin 16 t \\
& x=c_{1} \cos 16 t+c_{2} \sin 16 t+\cos 5 t \rightarrow 0=c_{1} \cdot 1+1 \rightarrow c_{1}=-1 \\
& x^{\prime}=-16 c_{1} \sin 16 t+16 c_{2} \cos 16 t-5 \sin 5 t \rightarrow 0=16 \cdot c_{2} \rightarrow c_{2}=0 \\
& x=-\cos 16 t+\cos 5 t
\end{aligned}
$$

(cc) $9 x^{11}+24 x^{1}+16 x=0 \quad \sqrt{24^{2}-4(9)(16)}=\sqrt{576-576}=0$ critically damped
(id)

$$
\begin{aligned}
\text { d) } & 2 I^{\prime \prime}+7 I^{\prime}+50 I=500 \sin (\omega t) \\
w & =\frac{1}{\sqrt{L C}}, \quad \begin{array}{l}
L=2 \\
R=7
\end{array} \frac{1}{c}=50,50 c=\frac{1}{50} \\
= & \frac{1}{\sqrt{2 / 50}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5=\omega
\end{aligned}
$$

Chapters 4 and 5

2. (Systems of Differential Equations) 10
$x^{(a)}[30 \%]$ The 3×3 matrix

$$
A=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

has eigenvalues $\lambda=3,4,5$. One Euler solution vector is $\vec{v} e^{\lambda t}$ with $\lambda=3$ and $\vec{v}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$. Find two
more Euler solution vectors and then display the vector general solution $\vec{x}(t)$ of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.
(b) $[40 \%]$ The 3×3 triangular matrix

$$
A=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

represents a linear cascade, such as found in brine tank models.
Part 1. Use the linear integrating factor method to find the vector general solution $\vec{x}(t)$ of $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$.
Part 2. The eigenanalysis method fails for this example. Cite two different methods, besides the linear integrating factor method, which apply to solve the system $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)$. Don't show solution details for these methods, but explain precisely each method and why the method applies.
(c) [30\%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=x+4 y, \quad y^{\prime}=-4 x+y
$$

which has complex eigenvalues $\lambda=1 \pm 4 i$.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.
(29) $\lambda=4: A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \begin{gathered}a+b=0 \\ a+c=0 \\ 0\end{gathered} \quad \begin{gathered}\text { choose } c=1 \\ \text { then } a=-1 \\ \& \\ b=1\end{gathered} \quad \lambda=4: \vec{v}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$
$\lambda=5: A=\left(\begin{array}{rrr}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & -1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \begin{aligned}-a+b+c & =0 \\ a-b+c & =0 \\ -c & =0 \\ c & =0\end{aligned} \quad \begin{aligned} & \text { then } \\ & a=b=1\end{aligned} \quad \lambda=5: \vec{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

Use this page to start your solution.

$$
\vec{x}(t)=c_{1} e^{3 t}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+c_{2} e^{y t}\left(\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right)+c_{3} e^{5 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

(4) run 1

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
3 & 1 & 0 \\
8 & 3 & 1 \\
0 & 0 & 4
\end{array}\right) \\
& x^{\prime}=3 x+y \\
& y^{\prime}=3 y+z \\
& z^{\prime}=4 z \\
& z^{\prime}-4 z=0 \Rightarrow z=\frac{c_{1}}{e^{-4 t}}=c_{1} e^{4 t} \\
& y^{\prime}-3 y=z \Rightarrow y^{\prime}-3 y=c_{1} e^{4 t} \quad W=\text { int factor }=e^{-3 t} \\
& \frac{W y)^{\prime}}{W}=c_{1} e^{4 t} \\
& (w y)^{\prime}=c_{1} w e^{4 t} \\
& \int\left(W_{y}\right)^{\prime}=\int c_{1} e^{-3 t} e^{4 t} d t=\int c_{1} e^{t} d t=c_{1} e^{t}+c_{2} \\
& y=\frac{c_{1} e^{t}}{e^{-3 t}}+\frac{c_{2}}{e^{-3 t}}=c_{1} e^{4 t}+c_{2} e^{3 t} \\
& x^{\prime}-3 x=y=c_{1} e^{4 t}+c_{2} e^{3 t} \quad W=e^{-3 t} \\
& \int(W x)^{\prime}=\int\left(c_{1} W e^{4 t}+c_{2} W e^{3 t}\right) d t=\int\left(c_{1} e^{-3 t} e^{4 t}+c_{2} e^{-3 t} e^{3 t}\right) d t \\
& W x=c_{1} e^{t}+c_{2} t+c_{3} \\
& =\int\left(c_{1} e^{t}+c_{2}\right) d t \\
& x=c_{1} e^{t} e^{3 t}+c_{2} t e^{3 t}+c_{3} e^{3 t} \\
& e^{4 t} \\
& x=c_{1} e^{4 t}+c_{2} t e^{3 t}+c_{3} e^{3 t} \\
& y=c_{1} e^{4 t}+c_{2} e^{3 t} \\
& z=c_{1} e^{4 t}
\end{aligned}
$$

Part 2

1) The Cayley-Hamilton ziebur method can apply to a 3×3 system, details of the method are shown for part c of this problem.
(2) Laplace transforms coned be used by starting with z ' equation and working upwards.
(2c) $x^{\prime}=x+4 y, y^{\prime}=-4 x+y \quad n-1=41$

$$
\begin{aligned}
& \begin{array}{ll}
A=\left(\begin{array}{cc}
1 & 4 \\
-4 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1-\lambda & 4 \\
-4 & 1-\lambda
\end{array}\right)= & (1-\lambda)^{2}+16=0 \\
& (1-\lambda)^{2}=-16 \\
& 1-\lambda= \pm 4 i \\
& \lambda=1 \pm 4 i
\end{array} \\
& \begin{array}{l}
x=c_{1} e^{t} \cos 4 t+c_{2} e^{t} \sin 4 t
\end{array} \\
& \begin{array}{c}
x^{\prime}=x+4 y \rightarrow y=\frac{1}{4}\left(x^{\prime}-x\right) \\
x^{\prime}=\underbrace{c_{1} e^{t} \cos 4 t c_{2} e^{t} \sin 4 t}_{x}-4 c_{1} e^{t} \sin 4 t+4 c_{2} e^{t} \cos 4 t
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { so } y & =\frac{1}{4}\left(x-4 c_{1} e^{t} \sin 4 t+4 c_{2} e^{t} \cos 4 t-x\right) \\
y & =-c_{1} e^{t} \sin 4 t+c_{2} e^{t} \cos 4 t
\end{array}\right) .
$$

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) $[20 \%]$ Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\frac{d}{d t} \vec{u}=\left(\begin{array}{cc}
-1 & 1 \\
-2 & 1
\end{array}\right) \vec{u}
$$

(b) $[30 \%]$ Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=x-2 y^{2}-2 y+32 \\
& y^{\prime}=2 x(x-2 y)=2 x^{2}-4 x y
\end{aligned}
$$

An equilibrium point is $x=-8, y=-4$. Compute the Jacobian matrix of the linearized system at this equilibrium point.
(c) $[30 \%]$ Consider the soft nonlinear spring system $\left\{\begin{array}{l}x^{\prime}=y, \\ y^{\prime}=-5 x-2 y+\frac{5}{4} x^{3} .\end{array}\right.$
(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$, where A is the Jacobian matrix of this system at $x=2, y=0$.
(2) Apply the Pasting Theorem to classify $x=2, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.
(d) $[20 \%]$ State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above. Accuracy and completeness expected.
(30) $\left(\begin{array}{cc}-1-\lambda & 1 \\ -2 & 1-\lambda\end{array}\right)=(-1-\lambda)(1-\lambda)+2=-1-\lambda+\lambda+\lambda^{2}+2=\lambda^{2}+1 \rightarrow \lambda= \pm i$
$\lambda= \pm i$, therefore $\vec{u}=\overrightarrow{0}$ is stable and is a center
(3b) $J(x, y)=\left(\begin{array}{cc}1 & -4 y-2 \\ 4 x-4 y & -4 x\end{array}\right), \quad J(-8,-4)=\left(\begin{array}{cc}1 & 16-2 \\ -16+32 & 32\end{array}\right)=\left(\begin{array}{cc}1 & 14 \\ 16 & 32\end{array}\right)$

Use this page to start your solution.
sc) $\left\{\begin{array}{l}x=y \\ y^{\prime}=-5 x-2 y+\frac{5}{4} x^{3}\end{array}\right.$
(1) $J(x, y)=\left(\begin{array}{cc}0 & 1 \\ -5+\frac{15}{4} x^{2} & -2\end{array}\right) \quad J(2,0)=\left(\begin{array}{cc}0 & 1 \\ 10 & -2\end{array}\right)$

$$
\begin{aligned}
& -5+\frac{15}{4} \cdot 4=10 \\
& \left(\begin{array}{cr}
0-\lambda & 1 \\
10 & -2-\lambda
\end{array}\right)=-\lambda(-2-\lambda)-10=2 \lambda+\lambda^{2}-10=0 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \lambda=-2 \lambda-1)^{2}-11=0=0 \\
&
\end{aligned}
$$

\rightarrow eigenvalues real, opposite signs \Rightarrow saddle, unstable
pasting the implies $(2,0)$ as saddle for nonlinear dynamical system
(3d) pasting theorem says for classifications of critical points for noh-linear system:
(1) If $\lambda_{1}=\lambda_{2}$ and λ_{1}, λ_{2} real eigenvalues then $\left\{\begin{array}{l}\lambda_{1}, \lambda_{2}<0 \text { stable } \\ \lambda_{1}, \lambda_{2}>0 \text { unstable }\end{array}\right.$ andrwill be a node or a spiral
(2) If $\lambda_{1}, \lambda_{2}= \pm b i$, pure imaginary eigenvalues, then critical point will be a center or a spiral and will be stable or unstable
(3) If λ_{1}, λ_{2} are not as above, then the linear classifications will be true for the non-linear system

