Differential Equations 2280
Midterm Exam 3
Exam Date: 22 April 2016 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4.

Chapter 3
apter 20

1. (Linear Constant Equations of Order n)

/\, (a) [30%)] Find by variation of parameters a particular solution yp for the equation 3" = z2. Show all
steps in variation of parameters. Check the answer by quadrature.

/Jr (b) [40%)] Find the Beats solution for the forced undamped spring-mass problem
" + 256z = 231 cos(5t), z(0) = £'(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencics. To save
time, please don't convert to phase-amplitude form.

A. (c) [20%] Given mz"(t) + cz'(t) + kz(t) = 0, which represents a damped spring-mass system, assume
m =9, ¢ = 24, k = 16. Determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for z(t).

Ao (d) [10%] Determine the practical resonance frequency w for the RLC current equation

2I" + 71" + 501 = 500 sin(wt).
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Use this page to start your solution.
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Chapters 4 and 5

2. (Systems of Differential Equations)

>
k(a) [30%)] The 3 x 3 matrix

4 11
A=11 41
0 0 4
1
has cigenvalues A = 3,4,5. One Euler solution vector is eM with A =3 and ¥ = | —1 |. Find two
0

more Euler solution vectors and then display the vector general solution Z(t) of d%:ir'(t) = AZ(t).
(b) [40%] The 3 x 3 triangular matrix

310
A= 03 1],
00 4

represents a linear cascade, such as found in brine tank models.

Part 1. Use the linear integrating factor method to find the vector general solution Z(t) of
4 3(t) = AZ(t).

Part 2. The eigenanalysis method fails for this example. Cite two different methods, besides the
linear integrating factor method, which apply to solve the system %i’(t) = AZ(t). Don't show
solution details for these methods, but explain precisely each method and why the method applies.

K (¢) [30%] The Cayley-Hamilton-Zicbur shortcut applies especially to the system
' =z+4y, ¥y =-4z+y,
which has complex cigenvalues A = 1 & 44,

Part 1. Show the details of the method, finally displaying formulas for =(t), y(t).
Part 2. Report a fundamental matrix ®(t).
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Use this page to start your solution.
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Chapter 6 [0

3. (Linear and Nonlinear Dynamical Systems)
(a) [20%)] Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the

A equilibrium point @ = 0 as a saddle, center, spiral or node. Sub-classification into improper or proper
node is not required.
47t 1)a
da ~ \ -2 1
(b) [30%) Consider the nonlinear dynamical system
¢ = z-21y%—2y+32,
y = 2z(z-— 2y). = foxl,L} 7(}
An equilibrium point is z = =8,y = —4. Compute the Jacobian matrix of the linearized system at this
equilibrium point.
. . . L =y,
A/(C) [30%)] Consider the soft nonlinear spring system { y = -bz—2y+ §°.
(1) Determine the stability at ¢ = oo and the phase portrait classification saddle, center,
spiral or node at @ =0 for the linear dynamical system ditﬂ' = Aii, where A is the Jacobian
matrix of this system at £ =2,y =0.
(2) Apply the Pasting Theorem to classify z =2,y =0as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.
(d) [20%] State the hypotheses and the conclusions of the Pasting Theorem used in part (c) above.
Accuracy and completeness expected.
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?hould be -16, not 16. Jacobian in x,y
is correct. Error excused.

Use this page to start your solution.
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