Differential Equations 2280
 Midterm Exam 3
 Exam Date: 24 April 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Chapter 3

1. (Linear Constant Equations of Order n)
(a) $[30 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=2+6 x$. Show all steps in variation of parameters. Check the answer by quadrature.
(b) $[10 \%]$ A particular solution of the equation $L I^{\prime \prime}+R I^{\prime}+(1 / C) I=I_{0} \cos (10 t)$ happens to be $I(t)=5 \cos (10 t)+e^{-2 t} \sin (\sqrt{17} t)-\sqrt{17} \sin (10 t)$. Assume L, R, C all positive. Find the unique periodic steady-state solution I_{SS}.
(c) [40\%] Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+64 x=39 \cos (5 t), \quad x(0)=x^{\prime}(0)=0 .
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert to phase-amplitude form.
(d) $[10 \%]$ Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+2 x(t)=0$, which represents a damped spring-mass system with $m=5$, $c=2, k=2$, determine if the equation is over-damped, critically damped or under-damped.
To save time, do not solve for $x(t)$.
(e) $[10 \%]$ Determine the practical resonance frequency ω for the spring-mass equation

$$
2 x^{\prime \prime}+7 x^{\prime}+50 x=500 \cos (\omega t)
$$

Use this page to start your solution.

Chapters 4 and 5

2. (Systems of Differential Equations)
(a) [30\%] Display eigenanalysis details for the 3×3 matrix

$$
A=\left(\begin{array}{lll}
5 & 1 & 1 \\
1 & 5 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

then display the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) [40\%] The 3×3 triangular matrix

$$
A=\left(\begin{array}{lll}
4 & 1 & 0 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

represents a linear cascade, such as found in brine tank models.
Part 1. Use the linear integrating factor method to find the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
Part 2. Explain why the eigenanalysis method fails for this example.
(c) [30\%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=5 x+4 y, \quad y^{\prime}=-4 x+5 y
$$

which has complex eigenvalues $\lambda=5 \pm 4 i$.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.

Use this page to start your solution.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\vec{u}^{\prime}=\left(\begin{array}{ll}
-3 & 1 \\
-2 & 1
\end{array}\right) \vec{u}
$$

(b) Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=x-2 y^{2}+2 y+32, \\
& y^{\prime}=2 x(x+2 y) .
\end{aligned}
$$

An equilibrium point is $x=-8, y=4$. Compute the Jacobian matrix $A=J(-8,4)$ of the linearized system at this equilibrium point.
(c) Consider the soft nonlinear spring system $\begin{cases}x^{\prime}= & y, \\ y^{\prime}=-5 x-2 y+\frac{5}{4} x^{3} .\end{cases}$

At equilibrium point $x=0, y=0$, the Jacobian matrix is $A=J(0,0)=\left(\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right)$.
(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$.
(2) Apply the Pasting Theorem to classify $x=0, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.
(3) Repeat the classification details of the previous two parts (1), (2) for the other two equilibrium points $(2,0),(-2,0)$, for which the Jacobian is $A=J(\pm 2,0)=\left(\begin{array}{rr}0 & 1 \\ 10 & -2\end{array}\right)$.

