
Differential Equations 2280
Sample Midterm Exam 2 with Solutions
Exam Date: 31 March 2017 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day
content will be much less, as was the case for Exam 1.

1. (Chapter 3)

(a) [50%] Find by any applicable method the steady-state periodic solution for the current equation
I ′′ + 2I ′ + 5I = −10 sin(t).
(b) [50%] Find by variation of parameters a particular solution yp for the equation y′′ = 1−x. Show all
steps in variation of parameters. Check the answer by quadrature.

Answer:
Part (a) Answer: Iss(t) = cos t− 2 sin t.
Variation of Parameters.
Solve x′′ + 2x′ + 5x = 0 to get xh = c1x1 + c2x2, x1 = e−t cos 2t, x2 = e−t sin 2t. Compute the Wronskian
W = x1x

′
2 − x′1x2 = 4e−2t. Then for f(t) = −10 sin(t),

xp = x1

∫
x2
−f
W

dt+ x2

∫
x1

f

W
dt.

The integrations are too difficult, so the method won’t be pursued.
Undetermined Coefficients.
The trial solution by Rule I is I = d1 cos t + d2 sin t. The homogeneous solutions have exponential factors,
therefore the Euler solution atoms in the trial solution cannot be solutions of the homogeneous problem,
hence Rule II does not apply.
Substitute the trial solution into the non-homogeneous equation to obtain the answers d1 = 1, d2 = −2. The
unique periodic solution Iss is extracted from the general solution I = Ih + Ip by crossing out all negative
exponential terms (terms which limit to zero at infinity). Because Ip = d1 cos t + d2 sin t = cos t − 2 sin t
and the homogeneous solution xh has negative exponential terms, then

Iss = cos t− 2 sin t.

Laplace Theory.
Plan: Find the general solution, then extract the steady-state solution by dropping negative exponential
terms. The computation can use initial data I(0) = I ′(0) = 0, because every particular solution contains the
terms of the steady-state solution. Some details:

(s2 + 2s+ 5)L(I) =
−10

s2 + 1

L(I) =
−10

(s2 + 1)(s2 + 2s+ 5)

L(I) =
−10

(s2 + 1)((s+ 1)2 + 4)

L(I) =
s− 2

s2 + 1
− s

(s+ 1)2 + 4

L(I) =
s

s2 + 1
− 2

1

s2 + 1
− s+ 1

(s+ 1)2 + 4
+

1

2

2

(s+ 1)2 + 4

L(I) = L(cos t)− 2L(sin t)− L(e−t cos 2t) +
1

2
L(e−t sin 2t)

I(t) = cos t− 2 sin t− e−t cos 2t+
1

2
e−t sin 2t, by Lerch’s Theorem.



Dropping the negative exponential terms gives the steady-state solution Iss(t) = cos t− 2 sin t.

Part (b) Answer: yp =
x2

2
− x3

6
.

Variation of Parameters.
Solve y′′ = 0 to get yh = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y

′
2 − y′1y2 = 1.

Then for f(t) = 1− x,

yp = y1

∫
y2
−f
W

dx+ y2

∫
y1
f

W
dx,

yp = 1

∫
−x(1− x)dx+ x

∫
1(1− x)dx,

yp = −1(x2/2− x3/3) + x(x− x2/2),
yp = x2/2− x3/6.
This answer is checked by quadrature, applied twice to y′′ = 1− x with initial conditions zero.

2. (Chapters 1, 2, 3)

(2a) [20%] Solve 2v′(t) = −8 +
2

2t+ 1
v(t), v(0) = −4. Show all integrating factor steps.

(2b) [10%] Solve for the general solution: y′′ + 4y′ + 6y = 0.

(2c) [10%] Solve for the general solution of the homogeneous constant-coefficient differential equation
whose characteristic equation is r(r2 + r)2(r2 + 9)2 = 0.

(2d) [20%] Find a linear homogeneous constant coefficient differential equation of lowest order which
has a particular solution y = x+ sin

√
2x+ e−x cos 3x.

(2e) [15%] A particular solution of the equation mx′′ + cx′ + kx = F0 cos(2t) happens to be x(t) =
11 cos 2t+ e−t sin

√
11t−

√
11 sin 2t. Assume m, c, k all positive. Find the unique periodic steady-state

solution xss.

(2f) [25%] Determine for y′′′ + y′′ = 100x2 + sinx the shortest trial solution for yp according to the
method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Answer:
(2a) v(t) = −4− 8t
(2b) r2 + 4r + 6 = 0, y = c1y1 + c2y2, y1 = e−2x cos

√
2x, y2 = e−2x sin

√
2x.

(2c) Write as r3(r + 1)2(r2 + 9)2 = 0. Then y is a linear combination of the atoms 1, x, x2, e−x, xe−x,
cos 3x, x cos 3x, sin 3x, x sin 3x.
(2d) The atoms that appear in y(x) are x, sin

√
2x, e−x cos 3x. Derivatives of these atoms create a longer list:

1, x, cos
√

2x, sin
√

2x, e−x cos 3x, e−x sin 3x. These atoms correspond to characteristic equation roots 0, 0;√
2i, −

√
2i, −1 + 3i, −1− 3i. Then the characteristic equation has factors r, r; x2 + 2; ((r+ 1)2 + 9). The

product of these factors is the correct characteristic equation, which corresponds to the differential equation
of least order such that y(x) is a solution. Report r6 + 2r5 + 12r4 + 4r3 + 20r2 = 0 as the characteristic
equation or y(6) + 2y(5) + 12y(4) + 4y′′′ + 20y′′ = 0 as the differential equation.
(2e) It has to equal the terms left over after striking out the transient terms, those terms with limit zero at
infinity. Then xss(t) = 11 cos 2t−

√
11 sin 2t.

(2f) The homogeneous solution is a linear combination of the atoms 1, x, e−x because the characteristic
polynomial has roots 0, 0, −1.
Rule 1 An initial trial solution y is constructed for atoms 1, x, x2, cosx, sinx giving 3 groups, each
group having the same base atom:

y = y1 + y2 + y3,
y1 = d1 + d2x+ d3x

2,
y2 = d4 cosx,
y3 = d5 sinx.



Linear combinations of the listed independent atoms are supposed to reproduce, by specialization of constants,
all derivatives of the right side of the differential equation.
Rule 2 The correction rule is applied individually to each of y1, y2, y3.
Multiplication by x is done repeatedly, until the replacement atoms do not appear in atom list for the
homogeneous differential equation. The result is the shortest trial solution

y = y1 + y2 + y3 = (d1x
2 + d2x

3 + d3x
4) + (d4 cosx) + (d5 sinx).

Some facts: (1) If an Euler solution atom of the homogeneous equation appears in a group, then it is removed
because of x-multiplication, but replaced by a new atom having the same base atom. (2) The number of
terms in each of y1 to y3 is unchanged from Rule I to Rule II.

3. (Laplace Theory)

(a) [50%] Solve by Laplace’s method x′′ + 2x′ + x = et, x(0) = x′(0) = 0.

(b) [25%] Assume f(t) is of exponential order. Find f(t) in the relation

d

ds
L(f(t))

∣∣∣∣
s→(s−3)

= L(f(t)− t).

(c) [25%] Derive an integral formula for y(t) by Laplace transform methods, explicitly using the Con-
volution Theorem, for the problem

y′′(t) + 4y′(t) + 4y(t) = f(t), y(0) = y′(0) = 0.

This is similar to a required homework problem from Chapter 7.

Answer:
(a)
x (t) = −1/4 e−t − 1/2 e−tt+ 1/4 et

An intermediate step is L(x(t)) =
1

(s− 1)(s+ 1)2
. The solution uses partial fractions

1

(s− 1)(s+ 1)2
=

A

s− 1
+

B

s+ 1
+

C

(s+ 1)2
, with answers A = 1/4, B = −1/4, C = −1/2.

(b)
Replace by the shift theorem and the s-differentiation theorem the given equation by

L
(
(−t)f(t)e3t

)
= L(f(t)− t).

Then Lerch’s theorem cancels L to give −te3tf(t) = f(t)− t. Solve for

f(t) =
t

1 + te3t
.

(c)
The main steps are:
(s2 + 4s+ 4)L(y(t)) = L(f(t)),

L(y(t)) =
1

(s+ 2)2
L(f(t)),

L(y(t)) = L(te−2t)L(f(t)), by the first shifting theorem,
L(y(t)) = L(convolution of te−2t and f(t)), by the Convolution Theorem,



L(y(t)) = L
(∫ t

0
xe−2xf(t− x)dx

)
, insert definition of convolution,

y(t) =

∫ t

0
xe−2xf(t− x)dx, by Lerch’s Theorem.

4. (Laplace Theory)

(4a) [20%] Explain Laplace’s Method, as applied to the differential equation x′(t)+2x(t) = et, x(0) = 1.
Reference only. Not to appear on any exam.

(4b) [15%] Solve L(f(t)) =
100

(s2 + 1)(s2 + 4)
for f(t).

(4c) [15%] Solve for f(t) in the equation L(f(t)) =
1

s2(s+ 3)
.

(4d) [10%] Find L(f) given f(t) = (−t)e2t sin(3t).

(4e) [20%] Solve x′′′ + x′′ = 0, x(0) = 1, x′(0) = 0, x′′(0) = 0 by Laplace’s Method.

(4f) [20%] Solve the system x′ = x+ y, y′ = x− y + 2, x(0) = 0, y(0) = 0 by Laplace’s Method.

Answer:
(4a) Laplace’s method explained.
The first step transforms the equation using the parts formula and initial data to get

(s+ 2)L(x) = 1 + L(et).

The forward Laplace table applies to evaluate L(et). Then write, after a division, the isolated formula for
L(x):

L(x) =
1 + 1/(s− 1)

s+ 2
=

s

(s− 1)(s+ 2)
.

Partial fraction methods plus the backward Laplace table imply

L(x) =
a

s− 1
+

b

s+ 2
= L(aet + be−2t)

and then x(t) = aet + be−2t by Lerch’s theorem. The constants are a = 1/3, b = 2/3.

(4b) L(f) = 100
(u+1)(u+4) = 100/3

u+1 + −100/3
u+4 where u = s2. Then L(f) = 100

3 ( 1
s2+1

− 1
s2+4

) = 100
3 L(sin t −

1
2 sin 2t) implies f(t) = 100

3 (sin t− 1
2 sin 2t).

(4c) L(f) = a
s + b

s2
+ c

s+3 = L(a+ bt+ ce−3t) implies f(t) = a+ bt+ ce−3t. The constants, by Heaviside
coverup, are a = −1/9, b = 1/3, c = 1/9.
(4d) L(f) = d

dsL(e2t sin 3t) by the s-differentiation theorem. The first shifting theorem implies L(e2t sin 3t) =

L(sin 3t)|s→(s−2). Finally, the forward table implies L(f) =
d

ds

(
1

(s− 2)2 + 9

)
=

−2(s− 2)

((s− 2)2 + 9)2
.

(4e) The answer is x(t) = 1, by guessing, then checking the answer. The Laplace details jump through hoops
to arrive at (s3 + s2)L(x(t)) = s2 + s, or simply L(x(t)) = 1/s. Then x(t) = 1.
(4f) The transformed system is

(s− 1)L(x) + (−1)L(y) = 0,
(−1)L(x) + (s+ 1)L(y) = L(2).

Then L(2) = 2/s and Cramer’s Rule gives the formulas

L(x) =
2

s(s2 − 2)
, L(y) =

2(s− 1)

s(s2 − 2)
.



After partial fractions and the backward table,

x = −1 + cosh(
√

2t), y =
√

2 sinh(
√

2t)− cosh(
√

2t) + 1.

5. (Laplace Theory)

(a) [30%] Solve L(f(t)) =
1

(s2 + s)(s2 − s)
for f(t).

(b) [20%] Solve for f(t) in the equation L(f(t)) =
s+ 1

s2 + 4s+ 5
.

(c) [20%] Let u(t) denote the unit step. Solve for f(t) in the relation

L(f(t)) =
d

ds
L(u(t− 1) sin 2t)

Remark: This is not a second shifting theorem problem.
(d) [30%] Compute L(e2tf(t)) for

f(t) =
et − e−t

t
.

Answer:
(a) f(t) = sinh(t)− t = 1

2e
t − 1

2e
−t − t

(b) f(t) = e−2t(cos(t)− sin(t))
(c) Replace d/ds by factor (−t) in the Laplace integrand:

L(f(t)) = L((−t) sin(2t)u(t− 1))

Apply Lerch’s theorem to cancel L on each side, obtaining the answer

f(t)) = (−t) sin(2t)u(t− 1).

(d) The first shifting theorem reduces the problem to computing L(f(t)).

L(tf(t)) = L(et − e−t) =
1

s− 1
− 1

s+ 1

− d

ds
L(f(t)) =

1

s− 1
− 1

s+ 1
, by the s-differentiation theorem,

Then F (s) = L(f(t)) satisfies a first order quadrature equation F ′(s) = h(s) with solution F (s) = ln |s +

1|− ln |s−1|+c = ln
∣∣∣ s+1
s−1

∣∣∣+c for some constant c. Because F = 0 at s =∞ (a basic theorem for functions

of exponential order) and ln |1| = 0, then c = 0 and L(f(t)) = F (s) = ln |s + 1| − ln |s − 1| = ln
∣∣∣ s+1
s−1

∣∣∣.
Then the shifting theorem implies

L
(
e2tf(t)

)
= L(f(t))|s:=s−2 = ln

∣∣∣∣s− 1

s− 3

∣∣∣∣ .

6. (Systems of Differential Equations)

The eigenanalysis method says that, for a 3×3 system x′ = Ax, the general solution is x(t) = c1v1e
λ1t+

c2v2e
λ2t + c3v3e

λ3t. In the solution formula, (λi,vi), i = 1, 2, 3, is an eigenpair of A. Given

A =

 4 1 1
1 4 1
0 0 4

 ,



then
(a) [75%] Display eigenanalysis details for A.
(b) [25%] Display the solution x(t) of x′(t) = Ax(t).

(c) Repeat (a), (b) for the matrix A =

 5 1 1
1 5 1
0 0 7

.

Answer:
(a): The details should solve the equation |A − λI| = 0 for three values λ = 5, 4, 3. Then solve the three
systems (A− λI)~v = ~0 for eigenvector ~v, for λ = 5, 4, 3.
The eigenpairs are

5,

 1
1
0

 ; 4,

 −1
−1

1

 ; 3,

 1
−1

0

 .
(b): The eigenanalysis method implies

x(t) = c1e
5t

 1
1
0

+ c2e
4t

 −1
−1

1

+ c3e
3t

 1
−1

0

 .
(c): The eigenpairs are

6,

 1
1
0

 ; 7,

 1
1
1

 ; 4,

 1
−1

0

 .
and The eigenanalysis method implies

x(t) = c1e
6t

 1
1
0

+ c2e
7t

 1
1
1

+ c3e
4t

 1
−1

0

 .

7. (Systems of Differential Equations)

(a) [30%] Find the eigenvalues of the matrix A =


4 1 −1 0
1 4 −2 1
0 0 2 0
0 0 2 4

.

(b) [20%] Justify that eigenvectors of A corresponding to the eigenvalues in increasing order are the four
vectors 

1
−5
−3

3

 ,

−1

1
0
0

 ,

−1

0
0
1

 ,


1
1
0
0

 .
(c) [50%] Display the general solution of u′ = Au according to the Eigenanalysis method.

Answer:



(a) Eigenvalues are λ = 2, 3, 4, 5.
Define

A =


4 1 −1 0
1 4 −2 1
0 0 2 0
0 0 2 4

 .
Subtract λ from the diagonal elements of A and expand the determinant det(A − λI) to obtain the char-
acteristic polynomial (2 − λ)(3 − λ)(4 − λ)(5 − λ) = 0. The eigenvalues are the roots: λ = 2, 3, 4, 5.
Used here was the cofactor rule for determinants. Also possible is the special result for block matrices,∣∣∣∣∣ B1 0
C B2

∣∣∣∣∣ = |B1||B2|. Sarrus’ rule does not apply for 4× 4 determinants (an error) and the triangular rule

likewise does not directly apply (another error).
(b) To be justified is AP = PD where D = diag(2, 3, 4, 5) is the diagonal matrix of eigenvalues (see part
(a)) and P is the augmented matrix of eigenvectors supplied above. Matrix multiply can check the answer,
by expanding each side of AP = PD.
Alternative method:
Solve (A − λI)~v = ~0 four times, for λ = 2, 3, 4, 5. Each is a homogeneous system of linear algebraic equa-
tions, reduced to RREF by swap, combo, multiply. Each eigenvector answer is Strang’s Special Solution.
(c) Because the eigenvalues are λ = 2, 3, 4, 5, then the solution is a vector linear combination of the Euler
solution atoms e2t, e3t, e4t, e5t:

u(t) = ~d1e
2t + ~d2e

3t + ~d3e
4t + ~d4e

5t.

According to the theory, ~dj = cj~vj , where (λ1, ~v1), . . . , (λ4, ~v4) are the eigenpairs of A and c1, c2, c3, c4 are
invented symbols representing real, arbitrary constants. Then

~u = c1e
2t


1
−5
−3

3

+ c2e
3t


−1

1
0
0

+ c3e
4t


−1

0
0
1

+ c4e
5t


1
1
0
0

 .

8. (Systems of Differential Equations)

(a) [100%] The eigenvalues are 3, 5 for the matrix A =

[
4 1
1 4

]
.

Display the general solution of u′ = Au according to the Cayley-Hamilton-Ziebur shortcut (textbook

chapters 4,5). Assume initial condition ~u0 =

(
1
−1

)
.

Answer:
(a) Cayley-Hamilton Ziebur Shortcut. The method says that the components x(t), y(t) of the solution
to the system

~u′ = A~u, ~u(0) =

(
1
−1

)

with A =

(
4 1
1 4

)
and ~u =

(
x(t)
y(t)

)
are linear combinations of the Euler atoms found from the roots

of the characteristic equation |A − rI| = 0. The roots are r = 3, 5 and the atoms are e3t, e5t. The scalar



system is 
x′(t) = 4x(t) + y(t),
y′(t) = x(t) + 4y(t),
x(0) = 1,
y(0) = −1.

The C-H-Z method implies x(t) = c1e
3t+c2e

5t, but c1, c2 are not arbitrary constants: they are determined by
the initial conditions x(0) = 1, y(0) = −1. Then x′ = 4x+y can be solved for y to obtain y(t) = x′(t)−4x(t).
Substitute expression x(t) = c1e

3t + c2e
5t into y(t) = x′(t)− 4x(t) to obtain

y(t) = x′(t)− 4x(t) = 3c1e
3t + 5c2e

5t − 4(c1e
3t + c2e

5t) = −c1e3t + c2e
5t.

Then {
x(t) = c1e

3t + c2e
5t,

y(t) = −c1e3t + c2e
5t.

(1)

Initial data x(0) = 1, y(0) = −1 are used in the last step, to evaluate c1, c2. Inserting these conditions
produces a 2× 2 linear system for c1, c2{

1 = c1e
0 + c2e

0,
−1 = −c1e0 + c2e

0.

The solution is c1 = 1 and c2 = 0, which implies the final answer x(t) = e3t, y(t) = −e3t.

Remark on Fundamental Matrices. The answer prior to evaluation of c1, c2 can be written as(
x(t)
y(t)

)
=

(
e3t e5t

−e3t e5t

)(
c1
c2

)
.

The matrix Φ(t) =

(
e3t e5t

−e3t e5t

)
is called a fundamental matrix, because it is nonsingular and satisfies

Φ′ = AΦ (its columns are solutions of ~u′ = A~u). In terms of Φ,

eAt = Φ(t)Φ−1(0).

This formula gives an alternative way to compute eAt by using the Cayley-Hamilton-Ziebur shortcut. Please
observe that the columns of Φ are the formal partial derivatives of the vector solution ~u on the symbols
c1, c2. Partial derivatives on symbols is a general method for discovering basis vectors. Therefore, Φ can be
written directly from equations (1).


