Differential Equations 2280

Sample Midterm Exam 2 with Solutions
Exam Date: 3 April 2015 at 12:50pm
Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$. Problems below cover the possibilities, but the exam day content will be much less, as was the case for Exam 1.

1. (Chapter 3)
(a) [50\%] Find by any applicable method the steady-state periodic solution for the current equation $I^{\prime \prime}+2 I^{\prime}+5 I=-10 \sin (t)$.
(b) [50\%] Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=1-x$. Show all steps in variation of parameters. Check the answer by quadrature.

Use this page to start your solution. Attach extra pages as needed, then staple.
2. (Chapters 1, 2, 3)
(2a) [20\%] Solve $2 v^{\prime}(t)=-8+\frac{2}{2 t+1} v(t), v(0)=-4$. Show all integrating factor steps.
(2b) $[10 \%]$ Solve for the general solution: $y^{\prime \prime}+4 y^{\prime}+6 y=0$.
(2c) $[10 \%]$ Solve for the general solution of the homogeneous constant-coefficient differential equation whose characteristic equation is $r\left(r^{2}+r\right)^{2}\left(r^{2}+9\right)^{2}=0$.
(2d) [20\%] Find a linear homogeneous constant coefficient differential equation of lowest order which has a particular solution $y=x+\sin \sqrt{2} x+e^{-x} \cos 3 x$.
(2e) [15\%] A particular solution of the equation $m x^{\prime \prime}+c x^{\prime}+k x=F_{0} \cos (2 t)$ happens to be $x(t)=$ $11 \cos 2 t+e^{-t} \sin \sqrt{11} t-\sqrt{11} \sin 2 t$. Assume m, c, k all positive. Find the unique periodic steady-state solution x_{SS}.
(2f) [25\%] Determine for $y^{\prime \prime \prime}+y^{\prime \prime}=100 x^{2}+\sin x$ the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (Laplace Theory)
(a) $[50 \%]$ Solve by Laplace's method $x^{\prime \prime}+2 x^{\prime}+x=e^{t}, x(0)=x^{\prime}(0)=0$.
(b) $[25 \%]$ Assume $f(t)$ is of exponential order. Find $f(t)$ in the relation

$$
\left.\frac{d}{d s} \mathcal{L}(f(t))\right|_{s \rightarrow(s-3)}=\mathcal{L}(f(t)-t)
$$

(c) $[25 \%]$ Derive an integral formula for $y(t)$ by Laplace transform methods, explicitly using the Convolution Theorem, for the problem

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=f(t), \quad y(0)=y^{\prime}(0)=0 .
$$

Use this page to start your solution. Attach extra pages as needed, then staple.
4. (Laplace Theory)
(4a) [20\%] Explain Laplace's Method, as applied to the differential equation $x^{\prime}(t)+2 x(t)=e^{t}, x(0)=1$.
(4b) $[15 \%]$ Solve $\mathcal{L}(f(t))=\frac{100}{\left(s^{2}+4\right)\left(s^{2}+9\right)}$ for $f(t)$.
(4c) $[15 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{1}{s^{2}(s+3)}$.
(4d) [10\%] Find $\mathcal{L}(f)$ given $f(t)=(-t) e^{2 t} \sin (3 t)$.
(4e) [20\%] Solve $x^{\prime \prime \prime}+x^{\prime \prime}=0, x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0$ by Laplace's Method.
(4f) [20\%] Solve the system $x^{\prime}=x+y, y^{\prime}=x-y+2, x(0)=0, y(0)=0$ by Laplace's Method.
5. (Laplace Theory)
(a) $[30 \%]$ Solve $\mathcal{L}(f(t))=\frac{1}{\left(s^{2}+s\right)\left(s^{2}-s\right)}$ for $f(t)$.
(b) $[20 \%]$ Solve for $f(t)$ in the equation $\mathcal{L}(f(t))=\frac{s+1}{s^{2}+4 s+5}$.
(c) [20\%] Let $u(t)$ denote the unit step. Solve for $f(t)$ in the relation

$$
\mathcal{L}(f(t))=\frac{d}{d s} \mathcal{L}(u(t-1) \sin 2 t)
$$

(d) $[30 \%]$ Compute $\mathcal{L}\left(e^{2 t} f(t)\right)$ for

$$
f(t)=\frac{e^{t}-e^{-t}}{t}
$$

6. (Systems of Differential Equations)

The eigenanalysis method says that, for a 3×3 system $\mathbf{x}^{\prime}=A \mathbf{x}$, the general solution is $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+$ $c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t}$. In the solution formula, $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2,3$, is an eigenpair of A. Given

$$
A=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

then
(a) [75\%] Display eigenanalysis details for A.
(b) [25\%] Display the solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. (c) Repeat (a), (b) for the matrix $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 0 & 0 & 7\end{array}\right]$.

7. (Systems of Differential Equations)

(a) $[40 \%]$ Find the eigenvalues of the matrix $A=\left[\begin{array}{rrrr}4 & 1 & -1 & 0 \\ 1 & 4 & -2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 4\end{array}\right]$.
(b) $[60 \%]$ Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to Putzer's spectral formula. Leave matrix products unexpanded, in order to save time. However, do compute the coefficient functions r_{1}, r_{2}, r_{3}, r_{4}. The correct answer for r_{4}, using λ in increasing magnitude, is $y(x)=\frac{1}{6} e^{5 t}-\frac{1}{2} e^{4 t}+\frac{1}{2} e^{3 t}-\frac{1}{6} e^{2 t}$.
8. (Systems of Differential Equations)
(a) $[30 \%]$ The eigenvalues are 3,5 for the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right]$.

Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to Putzer's spectral formula. Don't expand matrix products, in order to save time.
(b) [20\%] Using the same matrix A from part (a), display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ according to the Cayley-Hamilton-Ziebur Method. To save time, write out the system to be solved for the two vectors, and then stop, without solving for the vectors. Assume initial condition $\vec{u}_{0}=\binom{1}{-1}$.
(c) [30\%] Using the same matrix A from part (a), compute explicitly all four entries of the exponential matrix $e^{A t}$ by any known method. Use either Putzer's formula or the formula $e^{A t}=\Phi(t) \Phi^{-1}(0)$, where Φ is a fundamental matrix.
(e) [20\%] Display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}, \vec{u}(0)=\binom{1}{-1}$.

