Differential Equations 2280
 Midterm Exam 2
 Exam Date: 1 April 2016 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count $1 / 4$.

1. (Chapter 1)
(a) $[30 \%]$ Solve $y^{\prime}+2 y=3$.
(b) $[30 \%]$ Solve $y^{\prime}+2 x y=0$.
(c) $[40 \%]$ Solve $y^{\prime}+y=2 e^{x}$.

2. (Chapter 3)

(a) $[30 \%]$ Find the factors of the characteristic equation of a linear homogeneous constant coefficient differential equation of lowest order which has a particular solution

$$
y(x)=10+5 x e^{x} \sin (x)+x e^{-x} .
$$

(b) [40\%] Determine for differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{3}+e^{-x}+\cos x
$$

the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!
(c) $[30 \%]$ Find the steady-state periodic solution for the spring-mass equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+17 x=130 \cos (t)
$$

given a particular solution

$$
x(t)=4 \mathrm{e}^{-t} \sin (4 t)+5 \mathrm{e}^{-t} \cos (4 t)+\sin (t)+8 \cos (t)
$$

3. (Laplace Theory)

(a) [50\%] Assume $f(t)$ is of exponential order. Find $f(t)$ in the relation

$$
\left.\left(\frac{d}{d s} \mathcal{L}(f(t))\right)\right|_{s \rightarrow(s+5)}=\frac{1}{s^{2}}+\frac{1}{(s+2)^{2}}
$$

(b) [50\%] Find $\mathcal{L}(f)$ given $f(t)=e^{2 t} \sin (t)+\left(e^{t}+e^{-t}\right)^{2}$.

4. (Laplace Theory)

(a) [30\%] The solution of $x^{\prime \prime}+x^{\prime}=0, x(0)=1, x^{\prime}(0)=0$ is $x(t)=1$. Show the details in Laplace's Method for obtaining this answer.
(b) $[40 \%]$ Solve the system $x^{\prime}=x-y, y^{\prime}=y+2, x(0)=0, y(0)=0$ by Laplace's Method. Check the answer for y by the superposition shortcut for linear equations with constant coefficients.
(c) [30\%] Find the Laplace transform of the convolution of $f(t)=e^{t}$ and $g(t)=t \cos t$.

5. (Systems of Differential Equations)

The eigenvalues of $A=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$ are 3,5 with corresponding eigenvectors $\binom{-1}{1},\binom{1}{1}$.
(a) $[20 \%]$ Display the general solution of $\mathbf{u}^{\prime}=A \mathbf{u}$ by the eigenanalysis method. Please use symbols c_{1}, c_{2} for the constants that appear in the general solution.
(b) $[50 \%]$ Display the details for solution of $\mathbf{u}^{\prime}=A \mathbf{u}, \vec{u}(0)=\binom{1}{-1}$, according to the Cayley-Hamilton-Ziebur shortcut.
The scalar form of the system is

$$
\left\{\begin{array}{l}
x^{\prime}(t)=4 x(t)+y(t), \\
y^{\prime}(t)=x(t)+4 y(t), \\
x(0)=1, \\
y(0)=-1
\end{array}\right.
$$

Please observe that the initial conditions evaluate constants, therefore the answer for (b) does not contain symbols c_{1}, c_{2}.
(c) $[30 \%]$ A fundamental matrix $\Phi(t)$ for $\mathbf{u}^{\prime}=A \mathbf{u}$ is a 2×2 invertible matrix such that $\Phi^{\prime}(t)=A \Phi(t)$. Using the answer from either (a) or (b), find one fundamental matrix $\Phi(t)$ for the system $\mathbf{u}^{\prime}=\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right) \mathbf{u}$.

