\qquad

Differential Equations 2280
 Midterm Exam 2

Exam Date: 3 April 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Chapter 3)
(a) $[70 \%]$ Find the steady-state periodic solution for the spring-mass equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+10 x=85 \cos (t)
$$

(b) $[30 \%]$ Solve for the general solution of the homogeneous constant-coefficient differential equation whose characteristic equation is

$$
r^{2}\left(r^{2}-r\right)^{2}\left(r^{2}+2 r+5\right)^{2}=0
$$

Use this page to start your solution. Attach extra pages as needed, then staple.
2. (Chapters 1, 2, 3)
(a) $[40 \%]$ Find the factors of the characteristic equation of a linear homogeneous constant coefficient differential equation of lowest order which has a particular solution

$$
y(x)=10+4 \cos (2 x)+5 x e^{x} \sin (x) .
$$

(b) $[60 \%]$ Determine for differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2}+x e^{-x}
$$

the shortest trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients!

Use this page to start your solution. Attach extra pages as needed, then staple.
3. (Laplace Theory)
(a) $[60 \%]$ Assume $f(t)$ is of exponential order. Find $f(t)$ in the relation

$$
\left.\left(\frac{d^{2}}{d s^{2}} \mathcal{L}(f(t))\right)\right|_{s \rightarrow(s+4)}=\mathcal{L}(f(t))+\frac{s^{2}+2}{s^{3}+s}
$$

(b) $[40 \%]$ Find $\mathcal{L}(f)$ given $f(t)=e^{2 t} \sin (3 t)+(t+1)^{2} e^{t}$.
4. (Laplace Theory)
(a) [40\%] The solution of $x^{\prime \prime \prime}+x^{\prime}=0, x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0$ is $x(t)=1$. Show the details in Laplace's Method for obtaining this answer.
(b) $[60 \%]$ Solve the system $x^{\prime}=x-y, y^{\prime}=x+y+2, x(0)=0, y(0)=0$ by Laplace's Method.
5. (Laplace Theory)
Compute $\mathcal{L}\left(\frac{\sinh (2 t)}{t}\right)$

Use this page to start your solution. Attach extra pages as needed, then staple.

6. (Systems of Differential Equations)

Let $A=\left(\begin{array}{ll}5 & 1 \\ 1 & 5\end{array}\right)$. The eigenvalues of A are 4, 6 .
(a) $[30 \%]$ Find all entries of the 2×2 exponential matrix $e^{A t}$ according to Putzer's spectral formula.
(b) $[40 \%]$ Display the solution of $\mathbf{u}^{\prime}=A \mathbf{u}, \vec{u}(0)=\binom{1}{-1}$, according to the Cayley-Hamilton-Ziebur shortcut. The scalar form of the system is

$$
\left\{\begin{aligned}
x^{\prime}(t) & =5 x(t)+y(t) \\
y^{\prime}(t) & =x(t)+5 y(t) \\
x(0) & =1 \\
y(0) & =-1
\end{aligned}\right.
$$

(c) $[30 \%]$ The eigenpairs of a 3×3 matrix C are

$$
\left(0,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right), \quad\left(1,\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right)
$$

Display the general solution of $\mathbf{u}^{\prime}=C \mathbf{u}$ by the eigenanalysis method.

Use this page to start your solution. Attach extra pages as needed, then staple.

