\qquad

Differential Equations 2280
 Midterm Exam 1

Exam Date: Friday, 26 February 2016 at 12:50pm

Instructions: This in-class exam is designed for 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[40 \%]$ Solve $y^{\prime}=\frac{2 x^{3}}{1+x^{2}}$.
(b) [60\%] Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{-t} v(t)\right)=2 e^{t}, v(0)=5$ and the position model $\frac{d x}{d t}=v(t), x(2)=2$.
Solution to Problem 1.
(a) Answer $y=x^{2}-\ln \left(x^{2}+1\right)+c$. The integral of $F(x)=\frac{2 x^{3}}{1+x^{2}}$ is found by substitution $u=1+x^{2}$, resulting in the new integration problem $\int F d x=\int \frac{u-1}{u} d u=\int(1) d u-\int \frac{d u}{u}$.
(b) Velocity $v(t)=2 e^{2 t}+3 e^{t}$ by quadrature. Integrate $x^{\prime}(t)=2 e^{2 t}+3 e^{t}$ with $x(0)=2$ to obtain position $x(t)=e^{2 t}+3 e^{t}-2$.

Name.

2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[40 \%]$ The equation $y^{\prime}+x(y+3)=y e^{x}+3 x$ is separable. Provide formulas for $F(x)$ and $G(y)$.
(b) $[60 \%]$ Apply partial derivative tests to show that $y^{\prime}=x+y$ is linear but not separable. Supply all details.

Solution to Problem 2.

(a) The equation is $y^{\prime}=y e^{x}-x y=\left(e^{x}-x\right) y$. Then $F(x)=e^{x}-x, G(y)=y$.
(b) Let $f(x, y)=x+y$. Then $\partial f / \partial y=1$, which is independent of y, hence the equation $y^{\prime}=f(x, y)$ is linear. The negative test is $\frac{\partial f / \partial y}{f}$ depends on x. In this case, the fraction is

$$
\frac{\partial f / \partial y}{f}=\frac{1}{f}=\frac{1}{x+y} .
$$

At $y=0$, this reduces to $1 / x$, which depends on x, therefore the equation $y^{\prime}=f(x, y)$ is not separable. Symmetrically, the test f_{x} / f depends on y implies $y^{\prime}=f(x, y)$ is not separable.

Name.

3. (Solve a Separable Equation)

Given $(5 y+10) y^{\prime}=\left(x e^{-x}+\sin (x) \cos (x)\right)\left(y^{2}+3 y-4\right)$.
Find a non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

Solution to Problem 3.

The solution by separation of variables identifies the separated equation $y^{\prime}=F(x) G(y)$ using

$$
F(x)=x e^{-x}+\sin (x) \cos (x), \quad G(y)=\frac{y^{2}+3 y-4}{5 y+10} .
$$

The integral of F is done by parts and also by u-substitution.

$$
\begin{aligned}
\int F d x & =\int x e^{-x} d x+\int \sin (x) \cos (x) d x \\
& =I_{1}+I_{2} \\
& =\int x e^{-x} d x \\
I_{1} & =-x e^{-x}-\int e^{-x} d x, \quad \text { parts } \quad u=x, d v=e^{-x} d x \\
& =-x e^{-x}-e^{-x}+c_{1} \\
I_{2} & =\int \sin (x) \cos (x) d x \\
& =\int u d u, \quad u=\sin (x), d u=\cos (x) d x \\
& =u^{2} / 2+c_{2} \\
& =\frac{1}{2} \sin ^{2}(x)+c_{2}
\end{aligned}
$$

Then $\int F d x=-x e^{-x}-e^{-x}+\frac{1}{2} \sin ^{2}(x)+c_{3}$.
The integral of $1 / G(y)$ requires partial fractions. The details:

$$
\begin{aligned}
\int \frac{d x}{G(y(x))} & =\int \frac{5 u+10}{u^{2}+3 u-4} d u, \quad u=y(x), d u=y^{\prime}(x) d x \\
& =\int \frac{5 u+10}{(u+4)(u-1)} d u \\
& =\int \frac{A}{u+4}+\frac{B}{u-1} d u, \quad A, B \quad \text { determined later, } \\
& =A \ln |u+4|+B \ln |u-1|+c_{4}
\end{aligned}
$$

The partial fraction problem

$$
\frac{5 u+10}{(u+4)(u-1)}=\frac{A}{u+4}+\frac{B}{u-1}
$$

can be solved in a variety of ways, with answer $A=\frac{-20+10}{-5}=2$ and $B=\frac{15}{5}=3$. The final implicit solution is obtained from $\int \frac{d x}{G(y(x))}=\int F(x) d x$, which gives the equation

$$
2 \ln |y+4|+3 \ln |y-1|=-x e^{-x}-e^{-x}+\frac{1}{2} \sin ^{2}(x)+c .
$$

Name.

4. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $2 x^{\prime}(t)=-64+\frac{10}{3 t+2} x(t), x(0)=32$. Show all integrating factor steps.
(b) $[20 \%]$ Solve $\frac{d y}{d x}-(\cos (x)) y=0$ using the homogeneous linear equation shortcut.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}-7 y=10$ using the superposition principle $y=y_{h}+y_{p}$ shortcut.

Expected are answers for y_{h} and y_{p}.

Solution to Problem 4.

(a) The answer is $v(t)=32+48 t$. The details:

$$
\begin{aligned}
& v^{\prime}(t)=-32+\frac{5}{3 t+2} v(t), \\
& v^{\prime}(t)+\frac{-5}{3 t+2} v(t)=-32, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& p(t)=\frac{-5}{3 t+2}, \\
& W=e^{\int p d t}, \quad \text { integrating factor } \\
& W=e^{u}, \quad u=\int p d t=-\frac{5}{3} \ln |3 t+2|=\ln \left(|3 t+2|^{-5 / 3}\right) \\
& W=(3 t+2)^{-5 / 3}, \quad \text { Final choice for } W .
\end{aligned}
$$

Then replace the left side of $v^{\prime}+p v=q$ by $(v W)^{\prime} / W$ to obtain

$$
\begin{aligned}
& v^{\prime}(t)+\frac{-5}{3 t+2} v(t)=-32, \quad \text { standard form } v^{\prime}+p(t) v=q(t) \\
& \frac{(v W)^{\prime}}{W}=-32, \quad \text { Replace left side by quotient }(v W)^{\prime} / W \\
& (v W)^{\prime}=-32 W, \quad \text { cross-multiply } \\
& v W=-32 \int W d t, \quad \text { quadrature step. }
\end{aligned}
$$

The evaluation of the integral is from the power rule:

$$
\int-32 W d t=-32 \int(3 t+2)^{-5 / 3} d t=-32 \frac{(3 t+2)^{-2 / 3}}{(-2 / 3)(3)}+c .
$$

Division by $W=(3 t+2)^{-5 / 3}$ then gives the general solution

$$
v(t)=\frac{c}{W}-\frac{32}{-2}(3 t+2)^{-2 / 3}(3 t+2)^{5 / 3} .
$$

Constant c evaluates to $c=0$ because of initial condition $v(0)=32$. Then

$$
v(t)=\frac{32}{-2}(3 t+2)^{-2 / 3}(3 t+2)^{5 / 3}=16(3 t+2)^{-\frac{2}{3}+\frac{5}{3}}=16(3 t+2) .
$$

(b) The answer is $y=$ constant divided by the integrating factor: $y=\frac{c}{W}$. Because $W=e^{u}$ where $u=\int-\cos (x) d x=-\sin x$, then $y=c e^{\sin x}$.
(c) The equilibrium solution (a constant solution) is $y_{p}=-\frac{10}{7}$. The homogeneous solution is $y_{h}=c e^{7 x / 5}=$ constant divided by the integrating factor. Then $y=y_{p}+y_{h}=-\frac{10}{7}+c e^{7 x / 5}$.

Name.

5. (Stability)

Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase portrait with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Solution to Problem 5.

The graphic is drawn using increasing and decreasing curves, which may or may not be depicted with turning points. The rules:

1. A curve drawn between equilibria is increasing if the sign is PLUS.
2. A curve drawn between equilibria is decreasing if the sign is MINUS.
3. Label: FUNNEL, STABLE

The signs left to right are PLUS MINUS crossing the equilibrium point.
4. Label: SPOUT, UNSTABLE

The signs left to right are MINUS PLUS crossing the equilibrium point.
5. Label: NODE, UNSTABLE

The signs left to right are PLUS PLUS crossing the equilibrium point, or The signs left to right are MINUS MINUS crossing the equilibrium point.

The answer:
$x=-10$: FUNNEL, STABLE
$x=-5$: SPOUT, UNSTABLE
$x=-3:$ FUNNEL, STABLE
$x=0$: SPOUT, UNSTABLE
$x=3$: NODE, UNSTABLE

Name.
6. (ch3)

Using Euler's theorem on Euler solution atoms and the characteristic equation for higher order constant-coefficient differential equations, solve (a), (b), (c).
(a) [40\%] Find a constant coefficient differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ which has particular solutions $-5 e^{-x}+x e^{-x}, 10 e^{-x}+x e^{-x}$.
(b) $[30 \%]$ Given characteristic equation $r(r-2)\left(r^{3}+4 r\right)\left(r^{2}+2 r+37\right)=0$, solve the differential equation.
(c) [30\%] Given $m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0$, which represents an unforced damped springmass system. Assume $m=4, c=4, k=129$. Classify the equation as over-damped, critically damped or under-damped. Illustrate in a spring-mass-dashpot drawing the assignment of physical constants m, c, k and the initial conditions $x(0)=1, x^{\prime}(0)=0$.

Solution to Problem 6.

6(a)
Multiply the first solution by 2 and add it to the second solution. Then Euler atom $x e^{-x}$ is a solution, which implies that $r=-1$ is a double root of the characteristic equation. Then the characteristic equation should be $(r-(-1))(r-(-1))=0$, or $r^{2}+2 r+1=0$. The differential equation is $y^{\prime \prime}+2 y^{\prime}+y=0$.
6(b)
The characteristic equation factors into $r^{2}(r-2)\left(r^{2}+4\right)\left((r+1)^{2}+36\right)=0$ with roots $r=$ 0,$0 ; 2 ; \pm 2 i ;-1 \pm 6 i$. Then y is a linear combination of the Euler solution atoms:
$1, x, e^{2 x}, \cos (2 x), \sin (2 x) ; e^{-x} \cos (6 x), e^{-x} \sin (6 x)$.
6(c)
Use $4 r^{2}+4 r+129=0$ and the quadratic formula to obtain roots $r=-1 / 2+4 \sqrt{2} i,-1 / 2-4 \sqrt{2} i$ and Euler solution atoms $e^{-x / 2} \cos 4 \sqrt{2} t, e^{-x / 2} \sin 4 \sqrt{2} t$. Then y is a linear combination of these two solution atoms, and it oscillates, therefore the classification is under-damped. The illustration shows a spring, a dashpot and a mass with labels k, c, m. Initial conditions mean mass elongation $x=1$, at rest.

A dashpot is represented as a cylinder and piston with rod, the rod attached to the mass. Variable x is positive in the down direction and negative in the up direction. The equilibrium position is $x=0$.

Name.

7. (ch3)

Determine for $y^{(3)}+y^{(2)}=x+2 e^{-x}+\sin x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients! The trial solution should be the one with fewest Euler solution atoms.

Solution to Problem 7.

The homogeneous equation $y^{(3)}+y^{(2)}=0$ has solution $y_{h}=c_{1}+c_{2} x+c_{3} e^{-x}$, because the characteristic polynomial has roots $0,0,-1$.
1 Rule I constructs an initial trial solution y from the list of independent Euler solution atoms

$$
e^{-x}, \quad 1, \quad x, \quad \cos x, \quad \sin x .
$$

Linear combinations of these atoms are supposed to reproduce, by assignment of constants, all derivatives of $f(x)=x+2 e^{-x}+\sin x$, which is the right side of the differential equation. Each of y_{1} to y_{4} in the display below is constructed to have the same base atom, which is the Euler atom obtained by stripping the power of x. For example, Euler solution atom $x e^{0 x}$ (or x, because $e^{0 x}=1$) strips to base atom $e^{0 x}$ or 1 .

$$
\begin{aligned}
y & =y_{1}+y_{2}+y_{3}+y_{4} \\
y_{1} & =d_{1} e^{-x} \\
y_{2} & =d_{2}+d_{3} x \\
y_{3} & =d_{4} \cos x \\
y_{4} & =d_{5} \sin x
\end{aligned}
$$

2 Rule II is applied individually to each of $y_{1}, y_{2}, y_{3}, y_{4}$ to give the corrected trial solution

$$
\begin{aligned}
y & =y_{1}+y_{2}+y_{3}+y_{4} \\
y_{1} & =d_{1} x e^{-x} \\
y_{2} & =x^{2}\left(d_{2}+d_{3} x\right) \\
y_{3} & =d_{4} \cos x \\
y_{4} & =d_{5} \sin x
\end{aligned}
$$

The powers of x multiplied in each case are selected to eliminate terms in the initial trial solution which duplicate homogeneous equation Euler solution atoms. For instance, $y_{1}=d_{1} e^{-x}$ is in conflict with the homogeneous equation, because e^{-x} is a common Euler atom of both y_{1} and the homogeneous solution ($y_{h}=c_{1}+c_{2} x+c_{3} e^{-x}$). Then Rule II multiplies y_{1} by x to obtain the replacement $y_{1}=d_{1} x e^{-x}$. This new term is again subjected to the Rule II test: Does y_{1} contain an Euler atom of the homogeneous equation? The answer is NO, so the x-multiplication stops and the term y_{1} is finished. We go on to the remaining terms, in the same way. Term y_{2} needs two x-multiplications. The factor used after so many x-multiplications is exactly x^{s} of the Edwards-Penney table, where s is the multiplicity of the characteristic equation root r that produced the conflicting atom in the homogeneous solution y_{h}. The atoms in terms y_{3}, y_{4} are not solutions of the homogeneous equation, therefore y_{3}, y_{4} are unaltered by Rule II.

