# 9.2 Eigenanalysis II

### Discrete Dynamical Systems

The matrix equation

(1) 
$$\vec{\mathbf{y}} = \frac{1}{10} \begin{pmatrix} 5 & 4 & 0 \\ 3 & 5 & 3 \\ 2 & 1 & 7 \end{pmatrix} \vec{\mathbf{x}}$$

predicts the state  $\vec{\mathbf{y}}$  of a system initially in state  $\vec{\mathbf{x}}$  after some fixed elapsed time. The  $3 \times 3$  matrix A in (1) represents the **dynamics** which changes the state  $\vec{\mathbf{x}}$  into state  $\vec{\mathbf{y}}$ . Accordingly, an equation  $\vec{\mathbf{y}} = A\vec{\mathbf{x}}$  is called a **discrete dynamical system** and A is called a **transition matrix**.

The eigenpairs of A in (1) are shown in *details* page 654 to be  $(1, \vec{\mathbf{v}}_1)$ ,  $(1/2, \vec{\mathbf{v}}_2)$ ,  $(1/5, \vec{\mathbf{v}}_3)$  where the eigenvectors are given by

(2) 
$$\vec{\mathbf{v}}_1 = \begin{pmatrix} 1 \\ 5/4 \\ 13/12 \end{pmatrix}, \quad \vec{\mathbf{v}}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{\mathbf{v}}_3 = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}.$$

**Market Shares.** A typical application of discrete dynamical systems is telephone long distance company market shares  $x_1, x_2, x_3$ , which are fractions of the total market for long distance service. If three companies provide all the services, then their market fractions add to one:  $x_1 + x_2 + x_3 = 1$ . The equation  $\vec{\mathbf{y}} = A\vec{\mathbf{x}}$  gives the market shares of the three companies after a fixed time period, say one year. Then market shares after one, two and three years are given by the **iterates** 

$$\begin{array}{rcl} \vec{\mathbf{y}}_1 &=& A\vec{\mathbf{x}},\\ \vec{\mathbf{y}}_2 &=& A^2\vec{\mathbf{x}},\\ \vec{\mathbf{y}}_3 &=& A^3\vec{\mathbf{x}}. \end{array}$$

Fourier's eigenanalysis model gives succinct and useful formulas for the iterates: if  $\vec{\mathbf{x}} = a_1 \vec{\mathbf{v}}_1 + a_2 \vec{\mathbf{v}}_2 + a_3 \vec{\mathbf{v}}_3$ , then

$$\begin{array}{rcl} \vec{\mathbf{y}}_{1} & = & A\vec{\mathbf{x}} & = & a_{1}\lambda_{1}\vec{\mathbf{v}}_{1} + a_{2}\lambda_{2}\vec{\mathbf{v}}_{2} + a_{3}\lambda_{3}\vec{\mathbf{v}}_{3}, \\ \vec{\mathbf{y}}_{2} & = & A^{2}\vec{\mathbf{x}} & = & a_{1}\lambda_{1}^{2}\vec{\mathbf{v}}_{1} + a_{2}\lambda_{2}^{2}\vec{\mathbf{v}}_{2} + a_{3}\lambda_{3}^{2}\vec{\mathbf{v}}_{3}, \\ \vec{\mathbf{y}}_{3} & = & A^{3}\vec{\mathbf{x}} & = & a_{1}\lambda_{1}^{3}\vec{\mathbf{v}}_{1} + a_{2}\lambda_{2}^{3}\vec{\mathbf{v}}_{2} + a_{3}\lambda_{3}^{3}\vec{\mathbf{v}}_{3}. \end{array}$$

The advantage of Fourier's model is that an iterate  $A^n$  is computed directly, without computing the powers before it. Because  $\lambda_1 = 1$  and  $\lim_{n\to\infty} |\lambda_2|^n = \lim_{n\to\infty} |\lambda_3|^n = 0$ , then for large n

$$\vec{\mathbf{y}}_n \approx a_1(1)\vec{\mathbf{v}}_1 + a_2(0)\vec{\mathbf{v}}_2 + a_3(0)\vec{\mathbf{v}}_3 = \begin{pmatrix} a_1 \\ 5a_1/4 \\ 13a_1/12 \end{pmatrix}.$$

The numbers  $a_1$ ,  $a_2$ ,  $a_3$  are related to  $x_1$ ,  $x_2$ ,  $x_3$  by the equations  $a_1 - a_2 - 4a_3 = x_1$ ,  $5a_1/4 + 3a_3 = x_2$ ,  $13a_1/12 + a_2 + a_3 = x_3$ . Due to  $x_1 + x_2 + x_3 = 1$ , the value of  $a_1$  is known,  $a_1 = 3/10$ . The three market shares after a long time period are therefore predicted to be 3/10, 3/8, 39/120. The reader should verify the identity  $\frac{3}{10} + \frac{3}{8} + \frac{39}{120} = 1$ .

Stochastic Matrices. The special matrix A in (1) is a stochastic matrix, defined by the properties

$$\sum_{i=1}^{n} a_{ij} = 1, \quad a_{kj} \ge 0, \quad k, j = 1, \dots, n.$$

The definition is memorized by the phrase *each column sum is one*. Stochastic matrices appear in **Leontief input-output models**, popularized by 1973 Nobel Prize economist Wassily Leontief.

#### Theorem 9 (Stochastic Matrix Properties)

Let A be a stochastic matrix. Then

- (a) If  $\vec{\mathbf{x}}$  is a vector with  $x_1 + \dots + x_n = 1$ , then  $\vec{\mathbf{y}} = A\vec{\mathbf{x}}$  satisfies  $y_1 + \dots + y_n = 1$ .
- (b) If  $\vec{\mathbf{v}}$  is the sum of the columns of I, then  $A^T\vec{\mathbf{v}} = \vec{\mathbf{v}}$ . Therefore,  $(1, \vec{\mathbf{v}})$  is an eigenpair of  $A^T$ .
- (c) The characteristic equation  $\det(A \lambda I) = 0$  has a root  $\lambda = 1$ . All other roots satisfy  $|\lambda| < 1$ .

#### **Proof of Stochastic Matrix Properties:**

- (a)  $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j = \sum_{j=1}^{n} (\sum_{i=1}^{n} a_{ij}) x_j = \sum_{j=1}^{n} (1) x_j = 1.$
- (b) Entry j of  $A^T \vec{\mathbf{v}}$  is given by the sum  $\sum_{i=1}^n a_{ij} = 1$ .
- (c) Apply (b) and the determinant rule  $\det(B^T) = \det(B)$  with  $B = A \lambda I$  to obtain eigenvalue 1. Any other root  $\lambda$  of the characteristic equation has a corresponding eigenvector  $\vec{\mathbf{x}}$  satisfying  $(A \lambda I)\vec{\mathbf{x}} = \vec{\mathbf{0}}$ . Let index j be selected such that  $M = |x_j| > 0$  has largest magnitude. Then  $\sum_{i \neq j} a_{ij} x_j + (a_{jj} \lambda) x_j = 0$  implies  $\lambda = \sum_{i=1}^n a_{ij} \frac{x_j}{M}$ . Because  $\sum_{i=1}^n a_{ij} = 1$ ,  $\lambda$  is a convex combination of n complex numbers  $\{x_j/M\}_{j=1}^n$ . These complex numbers are located in the unit disk, a convex set, therefore  $\lambda$  is located in the unit disk. By induction on n, motivated by the geometry for n=2, it is argued that  $|\lambda|=1$  cannot happen for  $\lambda$  an eigenvalue different from 1 (details left to the reader). Therefore,  $|\lambda|<1$ .

Details for the eigenpairs of (1): To be computed are the eigenvalues and eigenvectors for the  $3 \times 3$  matrix

$$A = \frac{1}{10} \left( \begin{array}{ccc} 5 & 4 & 0 \\ 3 & 5 & 3 \\ 2 & 1 & 7 \end{array} \right).$$

**Eigenvalues**. The roots  $\lambda = 1, 1/2, 1/5$  of the characteristic equation  $\det(A - \lambda I) = 0$  are found by these details:

$$\begin{array}{l} 0 = \det(A - \lambda I) \\ = \begin{vmatrix} .5 - \lambda & .4 & 0 \\ .3 & .5 - \lambda & .3 \\ .2 & .1 & .7 - \lambda \end{vmatrix} \\ = \frac{1}{10} - \frac{8}{10}\lambda + \frac{17}{10}\lambda^2 - \lambda^3 & \text{Expand by cofactors.} \\ = -\frac{1}{10}(\lambda - 1)(2\lambda - 1)(5\lambda - 1) & \text{Factor the cubic.} \end{array}$$

The factorization was found by long division of the cubic by  $\lambda - 1$ , the idea born from the fact that 1 is a root and therefore  $\lambda - 1$  is a factor (the Factor Theorem of college algebra). An answer check in maple:

```
with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
B:=evalm(A-lambda*diag(1,1,1));
eigenvals(A); factor(det(B));
```

**Eigenpairs**. To each eigenvalue  $\lambda = 1, 1/2, 1/5$  corresponds one **rref** calculation, to find the eigenvectors paired to  $\lambda$ . The three eigenvectors are given by (2). The details:

Eigenvalue  $\lambda = 1$ .

$$A - (1)I = \begin{pmatrix} .5 - 1 & .4 & 0 \\ .3 & .5 - 1 & .3 \\ .2 & .1 & .7 - 1 \end{pmatrix}$$

$$\approx \begin{pmatrix} -5 & 4 & 0 \\ 3 & -5 & 3 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 3 & -5 & 3 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & -6 & 6 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & -6 & 6 \\ 0 & 13 & -15 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx (1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx (1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \\ 0 & 0 & 0 \end{pmatrix}$$
Swap rule.
$$= \mathbf{rref}(A - (1)I)$$

An equivalent reduced echelon system is x - 12z/13 = 0, y - 15z/13 = 0. The free variable assignment is  $z = t_1$  and then  $x = 12t_1/13$ ,  $y = 15t_1/13$ . Let x = 1; then  $t_1 = 13/12$ . An eigenvector is given by x = 1, y = 4/5, z = 13/12. **Eigenvalue**  $\lambda = 1/2$ .

$$A - (1/2)I = \begin{pmatrix} .5 - .5 & .4 & 0 \\ .3 & .5 - .5 & .3 \\ .2 & .1 & .7 - .5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 4 & 0 \\ 3 & 0 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
Combination and multiply rules.
$$= \mathbf{rref}(A - .5I)$$

An eigenvector is found from the equivalent reduced echelon system y=0, x+z=0 to be x=-1, y=0, z=1.

Eigenvalue  $\lambda = 1/5$ .

$$A - (1/5)I = \begin{pmatrix} .5 - .2 & .4 & 0 \\ .3 & .5 - .2 & .3 \\ .2 & .1 & .7 - .2 \end{pmatrix}$$

$$\approx \begin{pmatrix} 3 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 5 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$
Combination rule.
$$= \mathbf{rref}(A - (1/5)I)$$

An eigenvector is found from the equivalent reduced echelon system x + 4z = 0, y - 3z = 0 to be x = -4, y = 3, z = 1.

An answer check in maple:

```
with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
eigenvects(A);
```

# Coupled and Uncoupled Systems

The linear system of differential equations

(3) 
$$x'_{1} = -x_{1} - x_{3}, x'_{2} = 4x_{1} - x_{2} - 3x_{3}, x'_{3} = 2x_{1} - 4x_{3},$$

is called **coupled**, whereas the linear system of growth-decay equations

(4) 
$$y'_{1} = -3y_{1}, \\ y'_{2} = -y_{2}, \\ y'_{3} = -2y_{3},$$

is called **uncoupled**. The terminology uncoupled means that each differential equation in system (4) depends on exactly one variable, e.g.,  $y'_1 = -3y_1$  depends only on variable  $y_1$ . In a coupled system, one of the differential equations must involve two or more variables.

Matrix characterization. Coupled system (3) and uncoupled system (4) can be written in matrix form,  $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$  and  $\vec{\mathbf{y}}' = D\vec{\mathbf{y}}$ , with coefficient matrices

$$A = \begin{pmatrix} -1 & 0 & -1 \\ 4 & -1 & -3 \\ 2 & 0 & -4 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

If the coefficient matrix is **diagonal**, then the system is **uncoupled**. If the coefficient matrix is **not diagonal**, then one of the corresponding differential equations involves two or more variables and the system is called **coupled** or **cross-coupled**.

# Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of the form u' = au. The solution formula  $u = ce^{at}$  then leads to the general solution of the system of equations. For instance, system (4) has general solution

(5) 
$$y_1 = c_1 e^{-3t}, \\ y_2 = c_2 e^{-t}, \\ y_3 = c_3 e^{-2t},$$

where  $c_1$ ,  $c_2$ ,  $c_3$  are **arbitrary constants**. The number of constants equals the dimension of the diagonal matrix D.

# Coordinates and Coordinate Systems

If  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  are three independent vectors in  $\mathbb{R}^3$ , then the matrix

$$P = \mathbf{aug}(\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3)$$

is invertible. The columns  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  of P are called a **coordinate** system. The matrix P is called a **change of coordinates**.

Every vector  $\vec{\mathbf{v}}$  in  $\mathcal{R}^3$  can be uniquely expressed as

$$\vec{\mathbf{v}} = t_1 \vec{\mathbf{v}}_1 + t_2 \vec{\mathbf{v}}_2 + t_3 \vec{\mathbf{v}}_3.$$

The values  $t_1$ ,  $t_2$ ,  $t_3$  are called the **coordinates** of  $\vec{\mathbf{v}}$  relative to the basis  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$ , or more succinctly, the **coordinates** of  $\vec{\mathbf{v}}$  relative to P.

# Viewpoint of a Driver

The physical meaning of a coordinate system  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  can be understood by considering an auto going up a mountain road. Choose orthogonal  $\vec{\mathbf{v}}_1$  and  $\vec{\mathbf{v}}_2$  to give positions in the driver's seat and define  $\vec{\mathbf{v}}_3$  be the seat-back direction. These are **local coordinates** as viewed from the driver's seat. The road map coordinates x, y and the altitude z define the **global coordinates** for the auto's position  $\vec{\mathbf{p}} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$ .



### Figure 1. An auto seat.

The vectors  $\vec{\mathbf{v}}_1(t)$ ,  $\vec{\mathbf{v}}_2(t)$ ,  $\vec{\mathbf{v}}_3(t)$  form an orthogonal triad which is a local coordinate system from the driver's viewpoint. The orthogonal triad changes continuously in t.

# Change of Coordinates

A coordinate change from  $\vec{\mathbf{y}}$  to  $\vec{\mathbf{x}}$  is a linear algebraic equation  $\vec{\mathbf{x}} = P\vec{\mathbf{y}}$  where the  $n \times n$  matrix P is required to be invertible  $(\det(P) \neq 0)$ . To illustrate, an instance of a change of coordinates from  $\vec{\mathbf{y}}$  to  $\vec{\mathbf{x}}$  is given by the linear equations

(6) 
$$\vec{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \vec{\mathbf{y}} \quad \text{or} \quad \begin{cases} x_1 & = y_1 + y_3, \\ x_2 & = y_1 + y_2 - y_3, \\ x_3 & = 2y_1 + y_3. \end{cases}$$

# Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems. The idea is to substitute a change of variables into a given uncoupled system. Consider a diagonal system  $\vec{\mathbf{y}}' = D\vec{\mathbf{y}}$ , like (4), and a change of variables  $\vec{\mathbf{x}} = P\vec{\mathbf{y}}$ , like (6). Differential calculus applies to give

(7) 
$$\vec{\mathbf{x}}' = (P\vec{\mathbf{y}})' \\
= P\vec{\mathbf{y}}' \\
= PD\vec{\mathbf{y}} \\
= PDP^{-1}\vec{\mathbf{x}}.$$

The matrix  $A = PDP^{-1}$  is not triangular in general, and therefore the change of variables produces a **cross-coupled** system.

An illustration. To give an example, substitute into uncoupled system (4) the change of variable equations (6). Use equation (7) to obtain

(8) 
$$\vec{\mathbf{x}}' = \begin{pmatrix} -1 & 0 & -1 \\ 4 & -1 & -3 \\ 2 & 0 & -4 \end{pmatrix} \vec{\mathbf{x}} \quad \text{or} \quad \begin{cases} x_1' = -x_1 - x_3, \\ x_2' = 4x_1 - x_2 - 3x_3, \\ x_3' = 2x_1 - 4x_3. \end{cases}$$

This **cross-coupled** system (8) can be solved using relations (6), (5) and  $\vec{\mathbf{x}} = P\vec{\mathbf{y}}$  to give the general solution

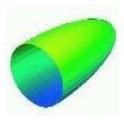
(9) 
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^{-3t} \\ c_2 e^{-t} \\ c_3 e^{-2t} \end{pmatrix}.$$

# Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system  $\vec{\mathbf{x}}'(t) = A\vec{\mathbf{x}}(t)$  be subjected to a change of variables  $\vec{\mathbf{x}} = P\vec{\mathbf{y}}$  which converts the system into a completely uncoupled system for variable  $\vec{\mathbf{y}}(t)$ ?

Under certain circumstances, this is true, and it leads to an elegant and especially simple expression for the general solution of the differential system, as in (9):


$$\vec{\mathbf{x}}(t) = P\vec{\mathbf{y}}(t).$$

The **task of eigenanalysis** is to simultaneously calculate from a cross-coupled system  $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$  the change of variables  $\vec{\mathbf{x}} = P\vec{\mathbf{y}}$  and the diagonal matrix D in the uncoupled system  $\vec{\mathbf{y}}' = D\vec{\mathbf{y}}$ 

The eigenanalysis coordinate system is the set of n independent vectors extracted from the columns of P. In this coordinate system, the cross-coupled differential system (3) simplifies into a system of uncoupled growth-decay equations (4). Hence the terminology, the method of simplifying coordinates.

# Eigenanalysis and Footballs

An ellipsoid or *football* is a geometric object described by its **semi-axes** (see Figure 2). In the vector representation, the **semi-axis directions** are unit vectors  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  and the **semi-axis lengths** are the constants a, b, c. The vectors  $a\vec{\mathbf{v}}_1$ ,  $b\vec{\mathbf{v}}_2$ ,  $c\vec{\mathbf{v}}_3$  form an **orthogonal triad**.



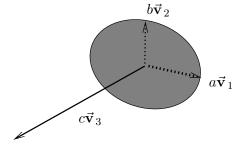



Figure 2. An American football.

An ellipsoid is built from orthonormal semi-axis directions  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  and the semi-axis lengths a, b, c. The semi-axis vectors are  $a\vec{\mathbf{v}}_1$ ,  $b\vec{\mathbf{v}}_2$ ,  $c\vec{\mathbf{v}}_3$ .

Two vectors  $\vec{\mathbf{a}}$ ,  $\vec{\mathbf{b}}$  are *orthogonal* if both are nonzero and their dot product  $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$  is zero. Vectors are **orthonormal** if each has unit length and they are pairwise orthogonal. The orthogonal triad is an **invariant** of the ellipsoid's algebraic representations. Algebra does not change the triad: the invariants  $a\vec{\mathbf{v}}_1$ ,  $b\vec{\mathbf{v}}_2$ ,  $c\vec{\mathbf{v}}_3$  must somehow be **hidden** in the equations that represent the football.

**Algebraic eigenanalysis** finds the hidden invariant triad  $a\vec{\mathbf{v}}_1$ ,  $b\vec{\mathbf{v}}_2$ ,  $c\vec{\mathbf{v}}_3$  from the ellipsoid's algebraic equations. Suppose, for instance, that the equation of the ellipsoid is supplied as

$$x^2 + 4y^2 + xy + 4z^2 = 16.$$

A symmetric matrix A is constructed in order to write the equation in the form  $\vec{\mathbf{X}}^T A \vec{\mathbf{X}} = 16$ , where  $\vec{\mathbf{X}}$  has components x, y, z. The replacement equation is<sup>4</sup>

(10) 
$$\left(\begin{array}{ccc} x & y & z \end{array}\right) \left(\begin{array}{ccc} 1 & 1/2 & 0 \\ 1/2 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 16.$$

It is the  $3 \times 3$  symmetric matrix A in (10) that is subjected to algebraic eigenanalysis. The matrix calculation will compute the unit semi-axis directions  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$ , called the **hidden vectors** or **eigenvectors**. The semi-axis lengths a, b, c are computed at the same time, by finding the **hidden values**<sup>5</sup> or **eigenvalues**  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$ , known to satisfy the relations

$$\lambda_1 = \frac{16}{a^2}, \quad \lambda_2 = \frac{16}{b^2}, \quad \lambda_3 = \frac{16}{c^2}.$$

For the illustration, the football dimensions are a=2, b=1.98, c=4.17. Details of the computation are delayed until page 662.

# The Ellipse and Eigenanalysis

An ellipse equation in **standard form** is  $\lambda_1 x^2 + \lambda_2 y^2 = 1$ , where  $\lambda_1 = 1/a^2$ ,  $\lambda_2 = 1/b^2$  are expressed in terms of the semi-axis lengths a, b. The expression  $\lambda_1 x^2 + \lambda_2 y^2$  is called a **quadratic form**. The study of the ellipse  $\lambda_1 x^2 + \lambda_2 y^2 = 1$  is equivalent to the study of the quadratic form equation

$$\vec{\mathbf{r}}^T D \vec{\mathbf{r}} = 1$$
, where  $\vec{\mathbf{r}} = \begin{pmatrix} x \\ y \end{pmatrix}$ ,  $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ .

<sup>&</sup>lt;sup>4</sup>The reader should pause here and multiply matrices in order to verify this statement. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.

<sup>&</sup>lt;sup>5</sup>The terminology *hidden* arises because neither the semi-axis lengths nor the semi-axis directions are revealed directly by the ellipsoid equation.

**Cross-terms.** An ellipse may be represented by an equation in a uv-coordinate system having a cross-term uv, e.g.,  $4u^2+8uv+10v^2=5$ . The expression  $4u^2+8uv+10v^2$  is again called a quadratic form. Calculus courses provide methods to eliminate the cross-term and represent the equation in standard form, by a **rotation** 

$$\begin{pmatrix} u \\ v \end{pmatrix} = R \begin{pmatrix} x \\ y \end{pmatrix}, \quad R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

The angle  $\theta$  in the rotation matrix R represents the rotation of uvcoordinates into standard xy-coordinates.

Eigenanalysis computes angle  $\theta$  through the columns of R, which are the unit semi-axis directions  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$  for the ellipse  $4u^2 + 8uv + 10v^2 = 5$ . If the quadratic form  $4u^2 + 8uv + 10v^2$  is represented as  $\vec{\mathbf{r}}^T A \vec{\mathbf{r}}$ , then

$$\vec{\mathbf{r}} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 4 \\ 4 & 10 \end{pmatrix}, \quad R = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix},$$
$$\lambda_1 = 12, \quad \vec{\mathbf{v}}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \lambda_2 = 2, \quad \vec{\mathbf{v}}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Rotation matrix angle  $\theta$ . The components of eigenvector  $\vec{\mathbf{v}}_1$  can be used to determine  $\theta = -63.4^{\circ}$ :

$$\begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{or} \quad \begin{cases} \cos \theta &= \frac{1}{\sqrt{5}}, \\ -\sin \theta &= \frac{2}{\sqrt{5}}. \end{cases}$$

The interpretation of angle  $\theta$ : rotate the orthonormal basis  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$  by angle  $\theta = -63.4^{\circ}$  in order to obtain the standard unit basis vectors  $\vec{\mathbf{i}}$ ,  $\vec{\mathbf{j}}$ . Most calculus texts discuss only the inverse rotation, where x, y are given in terms of u, v. In these references,  $\theta$  is the negative of the value given here, due to a different geometric viewpoint.

**Semi-axis lengths.** The lengths  $a \approx 1.55$ ,  $b \approx 0.63$  for the ellipse  $4u^2 + 8uv + 10v^2 = 5$  are computed from the eigenvalues  $\lambda_1 = 12$ ,  $\lambda_2 = 2$  of matrix A by the equations

$$\frac{\lambda_1}{5} = \frac{1}{a^2}, \quad \frac{\lambda_2}{5} = \frac{1}{b^2}.$$

**Geometry**. The ellipse  $4u^2 + 8uv + 10v^2 = 5$  is completely determined by the orthogonal semi-axis vectors  $a\vec{\mathbf{v}}_1$ ,  $b\vec{\mathbf{v}}_2$ . The rotation R is a rigid motion which maps these vectors into  $a\vec{\imath}$ ,  $b\vec{\jmath}$ , where  $\vec{\imath}$  and  $\vec{\jmath}$  are the standard unit vectors in the plane.

The  $\theta$ -rotation R maps  $4u^2 + 8uv + 10v^2 = 5$  into the xy-equation  $\lambda_1 x^2 + \lambda_2 y^2 = 5$ , where  $\lambda_1$ ,  $\lambda_2$  are the eigenvalues of A. To see why, let  $\vec{\mathbf{r}} = R\vec{\mathbf{s}}$  where  $\vec{\mathbf{s}} = \begin{pmatrix} x & y \end{pmatrix}^T$ . Then  $\vec{\mathbf{r}}^T A \vec{\mathbf{r}} = \vec{\mathbf{s}}^T (R^T A R) \vec{\mathbf{s}}$ . Using  $R^T R = I$  gives  $R^{-1} = R^T$  and  $R^T A R = \operatorname{diag}(\lambda_1, \lambda_2)$ . Finally,  $\vec{\mathbf{r}}^T A \vec{\mathbf{r}} = \lambda_1 x^2 + \lambda_2 y^2$ .

<sup>&</sup>lt;sup>6</sup>Rod Serling, author of *The Twilight Zone*, enjoyed the view from the other side of the mirror.

# **Orthogonal Triad Computation**

Let's compute the semiaxis directions  $\vec{\mathbf{v}}_1$ ,  $\vec{\mathbf{v}}_2$ ,  $\vec{\mathbf{v}}_3$  for the ellipsoid  $x^2 + 4y^2 + xy + 4z^2 = 16$ . To be applied is Theorem 7. As explained on page 660, the starting point is to represent the ellipsoid equation as a quadratic form  $X^TAX = 16$ , where the symmetric matrix A is defined by

$$A = \left(\begin{array}{rrr} 1 & 1/2 & 0 \\ 1/2 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right).$$

College algebra. The characteristic polynomial  $det(A - \lambda I) = 0$  determines the eigenvalues or hidden values of the matrix A. By cofactor expansion, this polynomial equation is

$$(4 - \lambda)((1 - \lambda)(4 - \lambda) - 1/4) = 0$$

with roots 4,  $5/2 + \sqrt{10}/2$ ,  $5/2 - \sqrt{10}/2$ .

Eigenpairs. It will be shown that three eigenpairs are

$$\lambda_1 = 4, \quad \vec{\mathbf{x}}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$\lambda_2 = \frac{5 + \sqrt{10}}{2}, \quad \vec{\mathbf{x}}_2 = \begin{pmatrix} \sqrt{10} - 3 \\ 1 \\ 0 \end{pmatrix},$$

$$\lambda_3 = \frac{5 - \sqrt{10}}{2}, \quad \vec{\mathbf{x}}_3 = \begin{pmatrix} \sqrt{10} + 3 \\ -1 \\ 0 \end{pmatrix}.$$

The vector norms of the eigenvectors are given by  $\|\vec{\mathbf{x}}_1\| = 1$ ,  $\|\vec{\mathbf{x}}_2\| = \sqrt{20 + 6\sqrt{10}}$ ,  $\|\vec{\mathbf{x}}_3\| = \sqrt{20 - 6\sqrt{10}}$ . The orthonormal semi-axis directions  $\vec{\mathbf{v}}_k = \vec{\mathbf{x}}_k/\|\vec{\mathbf{x}}_k\|$ , k = 1, 2, 3, are then given by the formulas

$$\vec{\mathbf{v}}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{\mathbf{v}}_2 = \begin{pmatrix} \frac{\sqrt{10} - 3}{\sqrt{20 - 6\sqrt{10}}} \\ \frac{1}{\sqrt{20 - 6\sqrt{10}}} \\ 0 \end{pmatrix}, \quad \vec{\mathbf{v}}_3 = \begin{pmatrix} \frac{\sqrt{10} + 3}{\sqrt{20 + 6\sqrt{10}}} \\ \frac{-1}{\sqrt{20 + 6\sqrt{10}}} \\ 0 \end{pmatrix}.$$

Frame sequence details.

$$\begin{aligned} \mathbf{aug}(A - \lambda_1 I, \vec{\mathbf{0}}) &= \begin{pmatrix} 1 - 4 & 1/2 & 0 & | & 0 \\ 1/2 & 4 - 4 & 0 & | & 0 \\ 0 & 0 & 4 - 4 & | & 0 \end{pmatrix} \\ &\approx \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} & \text{Used combination, multiply} \\ &\text{and swap rules. Found } \mathbf{rref}. \end{aligned}$$

$$\begin{aligned} \mathbf{aug}(A - \lambda_2 I, \vec{\mathbf{0}}) &= \begin{pmatrix} \frac{-3 - \sqrt{10}}{2} & \frac{1}{2} & 0 & | \ 0 \\ \frac{1}{2} & \frac{3 - \sqrt{10}}{2} & 0 & | \ 0 \\ 0 & 0 & \frac{3 - \sqrt{10}}{2} & | \ 0 \end{pmatrix} \\ &\approx \begin{pmatrix} 1 & 3 - \sqrt{10} & 0 & | \ 0 \\ 0 & 0 & 1 & | \ 0 \\ 0 & 0 & 0 & | \ 0 \end{pmatrix} \quad \text{All three rules.} \\ &\mathbf{aug}(A - \lambda_3 I, \vec{\mathbf{0}}) &= \begin{pmatrix} \frac{-3 + \sqrt{10}}{2} & \frac{1}{2} & 0 & | \ 0 \\ \frac{1}{2} & \frac{3 + \sqrt{10}}{2} & 0 & | \ 0 \\ 0 & 0 & \frac{3 + \sqrt{10}}{2} & 0 \end{pmatrix} \\ &\approx \begin{pmatrix} 1 & 3 + \sqrt{10} & 0 & | \ 0 \\ 0 & 0 & 1 & | \ 0 \\ 0 & 0 & 0 & | \ 0 \end{pmatrix} \quad \text{All three rules.} \end{aligned}$$

Solving the corresponding reduced echelon systems gives the preceding formulas for the eigenvectors  $\vec{\mathbf{x}}_1$ ,  $\vec{\mathbf{x}}_2$ ,  $\vec{\mathbf{x}}_3$ . The equation for the ellipsoid is  $\lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 = 16$ , where the multipliers of the square terms are the eigenvalues of A and X, Y, Z define the new coordinate system determined by the eigenvectors of A. This equation can be re-written in the form  $X^2/a^2 + Y^2/b^2 + Z^2/c^2 = 1$ , provided the semi-axis lengths a, b, c are defined by the relations  $a^2 = 16/\lambda_1$ ,  $b^2 = 16/\lambda_2$ ,  $c^2 = 16/\lambda_3$ . After computation, a = 2, b = 1.98, c = 4.17.