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This presentation of matrix eigenanalysis treats the subject in depth
for a 3× 3 matrix A. The generalization to an n× n matrix A is easily
supplied by the reader.

9.1 Eigenanalysis I

Treated here is eigenanalysis for matrix equations. The topics are eige-
nanalysis, eigenvalue, eigenvector, eigenpair and diagonalization.

What’s Eigenanalysis?

Matrix eigenanalysis is a computational theory for the matrix equation
y = Ax. Here, we assume A is a 3× 3 matrix.

The basis of eigenanalysis is Fourier’s Model:

x = c1v1 + c2v2 + c3v3 implies
y = Ax

= c1λ1v1 + c2λ2v2 + c3λ3v3.
(1)

These relations can be written as a single equation:

A (c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3.

The scale factors λ1, λ2, λ3 and independent vectors v1, v2, v3 depend
only on A. Symbols c1, c2, c3 stand for arbitrary numbers. This implies
variable x exhausts all possible 3-vectors in R3 and v1, v2, v3 is a basis
for R3. Fourier’s model is a replacement process:
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To compute Ax from x = c1v1 + c2v2 + c3v3, replace each
vector vi by its scaled version λivi.

Fourier’s model is said to hold provided there exist λ1, λ2, λ3 and in-
dependent vectors v1, v2, v3 satisfying (1). It is known that Fourier’s
model fails for certain matrices A, for example,

A =

 0 0 1
0 0 0
0 0 0

 .
Powers and Fourier’s Model. Equation (1) applies to compute pow-
ers An of a matrix A using only the basic vector space toolkit. To
illustrate, only the vector toolkit for R3 is used in computing

A5x = x1λ
5
1v1 + x2λ

5
2v2 + x3λ

5
3v3.

This calculation does not depend upon finding previous powers A2, A3,
A4 as would be the case by using matrix multiply.

Fourier’s model can reduce computational effort. Matrix 3 × 3 multi-
plication to produce yk = Akx requires 9k multiply operations whereas
Fourier’s 3× 3 model gives the answer with 3k + 9 multiply operations.

Fourier’s model illustrated. Let

A =

 1 3 0
0 2 −1
0 0 −5


λ1 = 1, λ2 = 2, λ3 = −5,

v1 =

 1
0
0

 , v2 =

 3
1
0

 , v3 =

 1
−2
−14

 .
Then Fourier’s model holds (details later) and

x = c1

 1
0
0

 + c2

 3
1
0

 + c3

 1
−2
−14

 implies

Ax = c1(1)

 1
0
0

 + c2(2)

 3
1
0

 + c3(−5)

 1
−2
−14


Eigenanalysis might be called the method of simplifying coordinates. The
nomenclature is justified, because Fourier’s model computes y = Ax by
scaling independent vectors v1, v2, v3, which is a triad or coordinate
system.

Success stories for eigenanalysis include geometric problems, systems of
differential equations representing mechanical systems, chemical kinetics,
electrical networks, and heat and wave partial differential equations.

In summary:
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The subject of eigenanalysis discovers a coordinate system
and scale factors such that Fourier’s model holds. Fourier’s
model simplifies the matrix equation y = Ax.

Differential Equations and Fourier’s Model. Systems of differential
equations can be solved using Fourier’s model, giving a compact and
elegant formula for the general solution. An example:

x′1 = x1 + 3x2,
x′2 = 2x2 − x3,
x′3 = − 5x3.

The matrix form is x′ = Ax, where A is the same matrix used in the
Fourier model illustration of the previous paragraph.

Fourier’s idea of re-scaling applies as well to differential equations, in the
following context. First, expand the initial condition x(0) in terms of
basis elements v1, v2, v3:

x(0) = c1v1 + c2v2 + c3.v3.

Then the general solution of x′ = Ax is given by replacing each vi by
the re-scaled vector eλitvi, giving the formula

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3.

For the illustration here, the result is x1

x2

x3

 = c1e
t

 1
0
0

+ c2e
2t

 3
1
0

+ c3e
−5t

 1
−2
−14

 .

What’s an Eigenvalue?

It is a scale factor. An eigenvalue is also called a proper value or a hidden
value. Symbols λ1, λ2, λ3 used in Fourier’s model are eigenvalues.

Historically, the German term eigenwert was used exclusively in litera-
ture, because German was the preferred publication language for physics.
Due to literature migration into English language journals, a hybrid term
eigenvalue evolved, the German word wert replaced by value

A Key Example. Let x in R3 be a data set variable with coordi-
nates x1, x2, x3 recorded respectively in units of meters, millimeters and
centimeters. We consider the problem of conversion of the mixed-unit
x-data into proper MKS units (meters-kilogram-second) y-data via the
equations

y1 = x1,
y2 = 0.001x2,
y3 = 0.01x3.

(2)
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Equations (2) are a model for changing units. Scaling factors λ1 = 1,
λ2 = 0.001, λ3 = 0.01 are the eigenvalues of the model. To summarize:

The eigenvalues of a model are scale factors. They are
normally represented by symbols λ1, λ2, λ3, . . . .

The data conversion problem (2) can be represented as y = Ax, where
the diagonal matrix A is given by

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 , λ1 = 1, λ2 =
1

1000
, λ3 =

1
100

.

What’s an Eigenvector?

Symbols v1, v2, v3 in Fourier’s model are called eigenvectors, or proper
vectors or hidden vectors. They are assumed independent.

The eigenvectors v1, v2, v3 of model (2) are three independent direc-
tions of application for the respective scale factors λ1 = 1, λ2 = 0.001,
λ3 = 0.01. The directions identify the components of the data set, to
which the individual scale factors are to be multiplied, to perform the
data conversion. Because the scale factors apply individually to the x1,
x2 and x3 components of a vector x, then

v1 =

 1
0
0

 , v2 =

 0
1
0

 , v3 =

 0
0
1

 .(3)

The data is represented as x = x1v1 +x2v2 +x3v3. The answer y = Ax
is given by the equation

y =

 λ1x1

0
0

 +

 0
λ2x2

0

 +

 0
0

λ3x3



= λ1x1

 1
0
0

 + λ2x2

 0
1
0

 + λ3x3

 0
0
1


= x1λ1v1 + x2λ2v2 + x3λ3v3.

In summary:

The eigenvectors of a model are independent directions
of application for the scale factors (eigenvalues).
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History of Fourier’s Model. The subject of eigenanalysis was
popularized by J. B. Fourier in his 1822 publication on the theory of
heat, Théorie analytique de la chaleur. His ideas can be summarized as
follows for the n× n matrix equation y = Ax.

The vector y = Ax is obtained from eigenvalues λ1, λ2,
. . . , λn and eigenvectors v1, v2, . . . , vn by replacing the
eigenvectors by their scaled versions λ1v1, λ2v2, . . . , λnvn:

x = c1v1 + c2v2 + · · · + cnvn implies
y = x1λ1v1 + x2λ2v2 + · · · + cnλnvn.

Determining Equations. The eigenvalues and eigenvectors are de-
termined by homogeneous matrix–vector equations. In Fourier’s model

A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3

choose c1 = 1, c2 = c3 = 0. The equation reduces to Av1 = λ1v1.
Similarly, taking c1 = c2 = 0, c2 = 1 implies Av2 = λ2v2. Finally,
taking c1 = c2 = 0, c3 = 1 implies Av3 = λ3v3. This proves:

Theorem 1 (Determining Equations in Fourier’s Model)
Assume Fourier’s model holds. Then the eigenvalues and eigenvectors are
determined by the three equations

Av1 = λ1v1,
Av2 = λ2v2,
Av3 = λ3v3.

The three relations of the theorem can be distilled into one homogeneous
matrix–vector equation

Av = λv.

Write it as Ax−λx = 0, then replace λx by λIx to obtain the standard
form1

(A− λI)v = 0, v 6= 0.

Let B = A− λI. The equation Bv = 0 has a nonzero solution v if and
only if there are infinitely many solutions. Because the matrix is square,
infinitely many solutions occurs if and only if rref(B) has a row of zeros.
Determinant theory gives a more concise statement: det(B) = 0 if and
only if Bv = 0 has infinitely many solutions. This proves:

Theorem 2 (Characteristic Equation)
If Fourier’s model holds, then the eigenvalues λ1, λ2, λ3 are roots λ of the
polynomial equation

det(A− λI) = 0.
1Identity I is required to factor out the matrix A − λI. It is wrong to factor out

A− λ, because A is 3× 3 and λ is 1× 1, incompatible sizes for matrix addition.
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The equation is called the characteristic equation. The character-
istic polynomial is the polynomial on the left, normally obtained by
cofactor expansion or the triangular rule.

An Illustration.

det

((
1 3
1 2

)
− λ

(
1 0
0 1

))
=

∣∣∣∣∣ 1− λ 3
1 2− λ

∣∣∣∣∣
= (1− λ)(2− λ)− 6
= λ2 − 3λ− 4
= (λ+ 1)(λ− 4).

The characteristic equation λ2 − 3λ− 4 = 0 has roots λ1 = −1, λ2 = 4.
The characteristic polynomial is λ2 − 3λ− 4.

Theorem 3 (Finding Eigenvectors of A)
For each root λ of the characteristic equation, write the frame sequence for
B = A − λI with last frame rref(B), followed by solving for the general
solution v of the homogeneous equation Bv = 0. Solution v uses invented
parameter names t1, t2, . . . . The vector basis answers ∂t1v, ∂t2v, . . . are
independent eigenvectors of A paired to eigenvalue λ.

Proof: The equation Av = λv is equivalent to Bv = 0. Because det(B) = 0,
then this system has infinitely many solutions, which implies the frame sequence
starting at B ends with rref(B) having at least one row of zeros. The general
solution then has one or more free variables which are assigned invented symbols
t1, t2, . . . , and then the vector basis is obtained by from the corresponding
list of partial derivatives. Each basis element is a nonzero solution of Av =
λv. By construction, the basis elements (eigenvectors for λ) are collectively
independent. The proof is complete.

The theorem implies that a 3 × 3 matrix A with eigenvalues 1, 2, 3
causes three frame sequences to be computed, each sequence producing
one eigenvector. In contrast, if A has eigenvalues 1, 1, 1, then only one
frame sequence is computed.

Definition 1 (Eigenpair)
An eigenpair is an eigenvalue λ together with a matching eigenvector
v 6= 0 satisfying the equation Av = λv. The pairing implies that scale
factor λ is applied to direction v.

A 3×3 matrix A for which Fourier’s model holds has eigenvalues λ1, λ2,
λ3 and corresponding eigenvectors v1, v2, v3. The eigenpairs of A are

(λ1,v1) , (λ2,v2) , (λ3,v3) .

Theorem 4 (Independence of Eigenvectors)
If (λ1,v1) and (λ2,v2) are two eigenpairs of A and λ1 6= λ2, then v1, v2

are independent.
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More generally, if (λ1,v1), . . . , (λk,vk) are eigenpairs of A corresponding
to distinct eigenvalues λ!, . . . , λk, then v1, . . . , vk are independent.

Proof: Let’s solve c1v1 + c2v2 = 0 for c1, c2. Apply A to this equation, then
c1λ1v1 + c2λ2v2 = 0. Multiply the first equation by λ2 and subtract from the
second equation to get c1(λ1 − λ2)v1 = 0. Because λ1 6= λ2, cancellation gives
c1v1 = 0. The assumption v1 6= 0 implies c1 = 0. Similarly, c2 = 0. This
proves v1, v2 are independent.

The general case is proved by induction on k. The case k = 1 follows because a
nonzero vector is an independent set. Assume it holds for k− 1 and let’s prove
it for k, when k > 1. We solve

c1v1 + · · ·+ ckvk = 0

for c1, . . . , ck. Apply A to this equation, which effectively replaces each ci by
λici. Then multiply the first equation by λ1 and subtract the two equations to
get

c2(λ1 − λ2)v1 + · · ·+ ck(λ1 − λk)vk = 0.

By the induction hypothesis, all coefficients are zero. Because λ1 − λi 6= 0
for i > 1, then c2 through ck are zero. Return to the first equation to obtain
c1v1 = 0. Because v1 6= 0, then c1 = 0. This finishes the induction.

Definition 2 (Diagonalizable Matrix)
A square matrix A for which Fourier’s model holds is called diagonaliz-
able. The n×nmatrix A has n eigenpairs with independent eigenvectors.

Eigenanalysis Facts.

1. An eigenvalue λ of a triangular matrix A is one of the diagonal
entries. If A is non-triangular, then an eigenvalue is found as a
root λ of det(A− λI) = 0.

2. An eigenvalue of A can be zero, positive, negative or even complex.
It is a pure number, with a physical meaning inherited from the
model, e.g., a scale factor.

3. An eigenvector for eigenvalue λ (a scale factor) is a nonzero di-
rection v of application satisfying Av = λv. It is found from a
frame sequence starting at B = A − λI and ending at rref(B).
Independent eigenvectors are computed from the general solution
as partial derivatives ∂/∂t1, ∂/∂t2, . . . .

4. If a 3 × 3 matrix has three independent eigenvectors, then they
collectively form in R3 a basis or coordinate system.
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Eigenpair Packages

The eigenpairs of a 3 × 3 matrix for which Fourier’s model holds are
labeled

(λ1,v1), (λ2,v2), (λ3,v3).

An eigenvector package is a matrix package P of eigenvectors v1, v2,
v3 given by

P = aug(v1,v2,v3).

An eigenvalue package is a matrix package D of eigenvalues given by

D = diag(λ1, λ2, λ3).

Important is the pairing that is inherited from the eigenpairs, which dic-
tates the packaging order of the eigenvectors and eigenvalues. Matrices
P, D are not unique: possible are 3! (= 6) column permutations.

An Example. The eigenvalues for the data conversion problem (2)
are λ1 = 1, λ2 = 0.001, λ3 = 0.01 and the eigenvectors v1, v2, v3 are
the columns of the identity matrix I, given by (3). Then the eigenpair
packages are

D =

 1 0 0
0 0.001 0
0 0 0.01

 , P =

 1 0 0
0 1 0
0 0 1

 .
Theorem 5 (Eigenpair Packages)
Let P be a matrix package of eigenvectors and D the corresponding matrix
package of eigenvalues. Then for all vectors c,

APc = PDc.

Proof: The result is valid for n × n matrices. We prove it for 3 × 3 matrices.
The two sides of the equation are expanded as follows.

PDc = P

 λ1 0 0
0 λ2 0
0 0 λ3

 c1
c2
c3

 Expand RHS.

= P

 λ1c1
λ2c2
λ3c3


= λ1c1v1 + λ2c2v2 + λ3c3v3 Because P has columns v1, v2, v3.

APc = A(c1v2 + c2v2 + c3v3) Expand LHS.

= c1λ1v1 + c2λ2v2 + c3λ3v3 Fourier’s model.
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The Equation AP = PD

The question of Fourier’s model holding for a given 3 × 3 matrix A is
settled here. According to the result, a matrix A for which Fourier’s
model holds can be constructed by the formula A = PDP−1 where D is
any diagonal matrix and P is an invertible matrix.

Theorem 6 (AP = PD)
Fourier’s model A(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3 holds
for eigenpairs (λ1,v1), (λ2,v2), (λ3,v3) if and only if the packages

P = aug(v1,v2,v3), D = diag(λ1, λ2, λ3)

satisfy the two requirements

1. Matrix P is invertible, e.g., det(P) 6= 0.

2. Matrix A = PDP−1, or equivalently, AP = PD.

Proof: Assume Fourier’s model holds. Define P = P and D = D, the eigenpair
packages. Then 1 holds, because the columns of P are independent. By Theo-
rem 5, APc = PDc for all vectors c. Taking c equal to a column of the identity
matrix I implies the columns of AP and PD are identical, that is, AP = PD.
A multiplication of AP = PD by P−1 gives 2.

Conversely, let P and D be given packages satisfying 1, 2. Define v1, v2, v3

to be the columns of P . Then the columns pass the rank test, because P is
invertible, proving independence of the columns. Define λ1, λ2, λ3 to be the
diagonal elements of D. Using AP = PD, we calculate the two sides of APc =
PDc as in the proof of Theorem 5, which shows that x = c1v1 + c2v2 + c2v3

implies Ax = c1λ1v1 + c2λ2v2 + c3λ3v3. Hence Fourier’s model holds.

The Matrix Eigenanalysis Method

The preceding discussion of data conversion now gives way to abstract
definitions which distill the essential theory of eigenanalysis. All of this
is algebra, devoid of motivation or application.

Definition 3 (Eigenpair)
A pair (λ,v), where v 6= 0 is a vector and λ is a complex number, is
called an eigenpair of the n× n matrix A provided

Av = λv (v 6= 0 required).(4)

The nonzero requirement in (4) results from seeking directions for a
coordinate system: the zero vector is not a direction. Any vector v 6= 0
that satisfies (4) is called an eigenvector for λ and the value λ is called
an eigenvalue of the square matrix A. The algorithm:
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Theorem 7 (Algebraic Eigenanalysis)
Eigenpairs (λ,v) of an n×n matrix A are found by this two-step algorithm:

Step 1 (College Algebra). Solve for eigenvalues λ in the nth
order polynomial equation det(A− λI) = 0.

Step 2 (Linear Algebra). For a given root λ from Step 1, a
corresponding eigenvector v 6= 0 is found by applying the rref
method2 to the homogeneous linear equation

(A− λI)v = 0.

The reported answer for v is routinely the list of partial deriva-
tives ∂t1v, ∂t2v, . . . , where t1, t2, . . . are invented symbols
assigned to the free variables.

The reader is asked to apply the algorithm to the identity matrix I; then
Step 1 gives n duplicate answers λ = 1 and Step 2 gives n answers, the
columns of the identity matrix I.
Proof: The equation Av = λv is equivalent to (A − λI)v = 0, which is a set
of homogeneous equations, consistent always because of the solution v = 0.

Fix λ and define B = A − λI. We show that an eigenpair (λ,v) exists with
v 6= 0 if and only if det(B) = 0, i.e., det(A−λI) = 0. There is a unique solution
v to the homogeneous equation Bv = 0 exactly when Cramer’s rule applies,
in which case v = 0 is the unique solution. All that Cramer’s rule requires is
det(B) 6= 0. Therefore, an eigenpair exists exactly when Cramer’s rule fails to
apply, which is when the determinant of coefficients is zero: det(B) = 0.

Eigenvectors for λ are found from the general solution to the system of equations
Bv = 0 where B = A−λI. The rref method produces systematically a reduced
echelon system from which the general solution v is written, depending on
invented symbols t1, . . . , tk. Since there is never a unique solution, at least one
free variable exists. In particular, the last frame rref(B) of the sequence has a
row of zeros, which is a useful sanity test.

The basis of eigenvectors for λ is obtained from the general solution v,
which is a linear combination involving the parameters t1, . . . , tk. The basis
elements are reported as the list of partial derivatives ∂t1v, . . . , ∂tkv.

Diagonalization

A square matrixA is called diagonalizable providedAP = PD for some
diagonal matrix D and invertible matrix P . The preceding discussions
imply that D must be a package of eigenvalues of A and P must be
the corresponding package of eigenvectors of A. The requirement on P

2For Bv = 0, the frame sequence begins with B, instead of aug(B,0). The
sequence ends with rref(B). Then the reduced echelon system is written, followed by
assignment of free variables and display of the general solution v.
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to be invertible is equivalent to asking that the eigenvectors of A be
independent and equal in number to the column dimension of A.

The matrices A for which Fourier’s model is valid is precisely the class of
diagonalizable matrices. This class is not the set of all square matrices:
there are matrices A for which Fourier’s model is invalid. They are called
non-diagonalizable matrices.

Theorem 4 implies that the construction for eigenvector package P al-
ways produces independent columns. Even if A has fewer than n eigen-
pairs, the construction still produces independent eigenvectors. In such
non-diagonalizable cases, caused by insufficient columns to form P ,
matrix A must have an eigenvalue of multiplicity greater than one.

If all eigenvalues are distinct, then the correct number of independent
eigenvectors were found and A is then diagonalizable with packages D,
P satisfying AP = PD. This proves the following result.

Theorem 8 (Distinct Eigenvalues)
If an n×n matrix A has n distinct eigenvalues, then it has n eigenpairs and
A is diagonalizable with eigenpair packages D, P satisfying AP = PD.

Examples

1 Example (Computing 2× 2 Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 0
2 −1

)
.

Solution:
College Algebra. The eigenvalues are λ1 = 1, λ2 = −1. Details:

0 = det(A− λI) Characteristic equation.

=
∣∣∣∣ 1− λ 0

2 −1− λ

∣∣∣∣ Subtract λ from the diag-
onal.

= (1− λ)(−1− λ) Sarrus’ rule.

Linear Algebra. The eigenpairs are
(

1,
(

1
1

))
,
(
−1,

(
0
1

))
. Details:

Eigenvector for λ1 = 1.

A− λ1I =
(

1− λ1 0
2 −1− λ1

)
=
(

0 0
2 −2

)
≈
(

1 −1
0 0

)
Swap and multiply rules.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = t1, y = t1 is eigenvector

v1 =
(

1
1

)
.

Eigenvector for λ2 = −1.

A− λ2I =
(

1− λ2 0
2 −1− λ2

)
=
(

2 0
2 0

)
≈
(

1 0
0 0

)
Combination and multiply.

= rref(A− λ2I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = t1 is eigenvector

v2 =
(

0
1

)
.

2 Example (Computing 2× 2 Complex Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 2
−2 1

)
.

Solution:
College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i. Details:

0 = det(A− λI) Characteristic equation.

=
∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ Subtract λ from the diagonal.

= (1− λ)2 + 4 Sarrus’ rule.

The roots λ = 1 ± 2i are found from the quadratic formula after expanding
(1− λ)2 + 4 = 0. Alternatively, use (1− λ)2 = −4 and take square roots.

Linear Algebra. The eigenpairs are
(

1 + 2i,
(
−i

1

))
,
(

1− 2i,
(

i
1

))
.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =
(

1− λ1 2
−2 1− λ1

)
=
(
−2i 2
−2 −2i

)
≈
(

i −1
1 i

)
Multiply rule.

≈
(

0 0
1 i

)
Combination rule, multiplier=−i.

≈
(

1 i
0 0

)
Swap rule.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = −it1, y = t1 is eigenvector

v1 =
(
−i

1

)
.

Eigenvector for λ2 = 1− 2i.
The problem (A − λ2I)v = 0 has solution v = v1, because taking conjugates

across the equation gives (A−λ2I)v = 0; then λ1 = λ2 gives v = v1 =
(

i
1

)
.

3 Example (Computing 3× 3 Eigenpairs)

Find all eigenpairs of the 3× 3 matrix A =

 1 2 0
−2 1 0

0 0 3

.

Solution:
College Algebra. The eigenvalues are λ1 = 1 + 2i, λ2 = 1 − 2i, λ3 = 3.
Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣
1− λ 2 0
−2 1− λ 0
0 0 3− λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1− λ)2 + 4)(3− λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1 ± 2i are
found from the quadratic formula after expanding (1−λ)2+4 = 0. Alternatively,
take roots across (λ− 1)2 = −4.

Linear Algebra.

The eigenpairs are

1 + 2i,

 −i1
0

,

1− 2i,

 i
1
0

,

3,

 0
0
1

.

Eigenvector for λ1 = 1 + 2i.

A− λ1I =

 1− λ1 2 0
−2 1− λ1 0
0 0 3− λ1


=

 −2i 2 0
−2 −2i 0

0 0 2− 2i


≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination rule, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A− λ1I) Reduced echelon form.
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The partial derivative ∂t1v of the general solution x = −it1, y = t1, z = 0 is

eigenvector v1 =

 −i1
0

.

Eigenvector for λ2 = 1− 2i.

The problem (A−λ2I)v2 = 0 has solution v2 = v1. To see why, take conjugates
across the equation to give (A−λ2I)v2 = 0. Then A = A (A is real) and λ1 = λ2

gives (A− λ1I)v2 = 0. Then v2 = v1. Finally, v2 = v2 = v1 =

 i
1
0

.

Eigenvector for λ3 = 3.

A− λ3I =

 1− λ3 2 0
−2 1− λ3 0
0 0 3− λ3


=

 −2 2 0
−2 −2 0

0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A− λ3I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = 0, z = t1 is

eigenvector v3 =

 0
0
1

.

4 Example (Decomposition A = PDP−1)
Decompose A = PDP−1 where P , D are eigenvector and eigenvalue pack-
ages, respectively, for the 3× 3 matrix

A =

 1 2 0
−2 1 0

0 0 3

 .
Write explicitly Fourier’s model in vector-matrix notation.

Solution: By the preceding example, the eigenpairs are1 + 2i,

 −i1
0

 ,

1− 2i,

 i
1
0

 ,

3,

 0
0
1

 .
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The packages are therefore

D = diag(1 + 2i, 1− 2i, 3), P =

 −i i 0
1 1 0
0 0 1

 .

Fourier’s model. The action of A in the model

A (c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3

is to replace the basis v1, v2, v3 by scaled vectors λ1v1, λ2v2, λ3v3. In vector
form, the model is

APc = PDc, c =

 c1
c2
c3

 .

Then the action of A is to replace eigenvector package P by the re-scaled package
PD. Explicitly,

x = c1

 −i1
0

+ c2

 i
1
0

+ c3

 0
0
1

 implies

Ax = c1(1 + 2i)

 −i1
0

+ c2(1− 2i)

 i
1
0

+ c3(3)

 0
0
1

 .

5 Example (Diagonalization I)
Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0

0 0 3 1
0 0 0 3

 .
If A is diagonalizable, then assemble and report eigenvalue and eigenvector
packages D, P .

Solution: The matrix A is non-diagonalizable, because it fails to have 4
eigenpairs. The details:

Eigenvalues.

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣∣∣
1− λ 2 0 0
−2 1− λ 0 0
0 0 3− λ 1
0 0 0 3− λ

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ (3− λ)2 Cofactor expansion applied twice.

=
(
(1− λ)2 + 4

)
(3− λ)2 Sarrus’ rule.
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The roots are 1± 2i, 3, 3, listed according to multiplicity.

Eigenpairs. They are1 + 2i,


−i

1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 .

Because only three eigenpairs exist, instead of four, then the matrix A is non-
diagonalizable. Details:

Eigenvector for λ1 = 1 + 2i.

A− λ1I =


1− λ1 2 0 0
−2 1− λ1 0 0
0 0 3− λ1 1
0 0 0 3− λ1



=


−2i 2 0 0
−2 −2i 0 0
0 0 2− 2i 1
0 0 0 2− 2i



≈


−i 1 0 0
−1 −i 0 0
0 0 2− 2i 1
0 0 0 1

 Multiply rule, three times.

≈


−i 1 0 0
−1 −i 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

≈


1 i 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 Combination and multiply rule.

= rref(A− λ1I) Reduced echelon form.

The general solution is x1 = −it1, x2 = t1, x3 = 0, x4 = 0. Then ∂t1 applied
to this solution gives the reported eigenpair.

Eigenvector for λ2 = 1− 2i.
Because λ2 is the conjugate of λ1 and A is real, then an eigenpair for λ2 is
found by taking the complex conjugate of the eigenpair reported for λ1.

Eigenvector for λ3 = 3. In theory, there can be one or two eigenpairs to
report. It turns out there is only one, because of the following details.

A− λ3I =


1− λ3 2 0 0
−2 1− λ3 0 0
0 0 3− λ3 1
0 0 0 3− λ3



=


−2 2 0 0
−2 −2 0 0

0 0 0 1
0 0 0 0
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≈


1 −1 0 0
1 1 0 0
0 0 0 1
0 0 0 0

 Multiply rule, two times.

≈


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 Combination and multiply rule.

= rref(A− λ3I) Reduced echelon form.

Apply ∂t1 to the general solution x1 = 0, x2 = 0, x3 = t1, x4 = 0 to give the
eigenvector matching the eigenpair reported above.

6 Example (Diagonalization II)
Report diagonalizable or non-diagonalizable for the 4× 4 matrix

A =


1 2 0 0
−2 1 0 0

0 0 3 0
0 0 0 3

 .
If A is diagonalizable, then assemble and report eigenvalue and eigenvector
packages D, P .

Solution: The matrix A is diagonalizable, because it has 4 eigenpairs1 + 2i,


−i

1
0
0


 ,

1− 2i,


i
1
0
0


 ,

3,


0
0
1
0


 ,

3,


0
0
0
1


 .

Then the eigenpair packages are given by

D =


−1 + 2i 0 0 0

0 1− 2i 0 0
0 0 3 0
0 0 0 3

 , P =


−i i 0 0

1 1 0 0
0 0 1 0
0 0 0 1

 .

The details parallel the previous example, except for the calculation of eigen-
vectors for λ3 = 3. In this case, the reduced echelon form has two rows of zeros
and parameters t1, t2 appear in the general solution. The answers given above
for eigenvectors correspond to the partial derivatives ∂t1 , ∂t2 .

7 Example (Non-diagonalizable Matrices)
Verify that the matrices

(
0 1
0 0

)
,

 0 0 1
0 0 0
0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


are all non-diagonalizable.
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Solution: Let A denote any one of these matrices and let n be its dimension.

First, we will decide on diagonalization, without computing eigenpairs. Assume,
in order to reach a contradiction, that eigenpair packages D, P exist with D
diagonal and P invertible such that AP = PD. Because A is triangular, its
eigenvalues appear already on the diagonal of A. Only 0 is an eigenvalue and
its multiplicity is n. Then the package D of eigenvalues is the zero matrix and
an equation AP = PD reduces to AP = 0. Multiply AP = 0 by P−1 to obtain
A = 0. But A is not the zero matrix, a contradiction. We conclude that A is
not diagonalizable.

Second, we attack the diagonalization question directly, by solving for the eigen-
vectors corresponding to λ = 0. The frame sequence has first frame B = A−λI,
but B equals rref(B) and no computations are required. The resulting reduced
echelon system is just x1 = 0, giving n− 1 free variables. Therefore, the eigen-
vectors of A corresponding to λ = 0 are the last n− 1 columns of the identity
matrix I. Because A does not have n independent eigenvectors, then A is not
diagonalizable.

Similar examples of non-diagonalizable matrices A can be constructed with A
having from 1 up to n − 1 independent eigenvectors. The examples with ones
on the super-diagonal and zeros elsewhere have exactly one eigenvector.

8 Example (Fourier’s 1822 Heat Model)
Fourier’s 1822 treatise Théorie analytique de la chaleur studied dissipation
of heat from a laterally insulated welding rod with ends held at 0◦C. Assume
the initial heat distribution along the rod at time t = 0 is given as a linear
combination

f = c1v1 + c2v2 + c3v3.

Symbols v1, v2, v3 are in the vector space V of all twice continuously
differentiable functions on 0 ≤ x ≤ 1, given explicitly as

v1 = sinπx, v2 = sin 2πx, v3 = sin 3πx.

Fourier’s heat model re-scales3 each of these vectors to obtain the tem-
perature u(t, x) at position x along the rod and time t > 0 as the model
equation

u(t, x) = c1e
−π2tv1 + c2e

−4π2tv2 + c3e
−9π2tv3.

Verify that u(t, x) solves Fourier’s partial differential equation heat model

∂u

∂t
=

∂2u

∂x2
,

u(0, x) = f(x), 0 ≤ x ≤ 1,
u(t, 0) = 0, zero Celsius at rod’s left end,
u(t, 1) = 0, zero Celsius at rod’s right end.

3The scale factors are not constants nor are they eigenvalues, but rather, they are
exponential functions of t, as was the case for matrix differential equations x′ = Ax
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Solution: First, we prove that the partial differential equation is satisfied by
Fourier’s solution u(t, x). This is done by expanding the left side (LHS) and
right side (RHS) of the differential equation, separately, then comparing the
answers for equality.

Trigonometric functions v1, v2, v3 are solutions of three different linear ordinary
differential equations: u′′+ π2u = 0, u′′+ 4π2u = 0, u′′+ 9π2u = 0. Because of
these differential equations, we can compute directly

∂2u

∂x2
= −π2c1e

−π2tv1 − 4π2c2e
−4π2tv2 − 9π2c3e

−9π2tv3.

Similarly, computing ∂tu(t, x) involves just the differentiation of exponential
functions, giving

∂u

∂t
= −π2c1e

−π2tv1 − 4π2c2e
−4π2tv2 − 9π2c3e

−9π2tv3.

Because the second display is exactly the first, then LHS = RHS, proving that
the partial differential equation is satisfied.

The relation u(0, x) = f(x) is proved by observing that each exponential factor
becomes e0 = 1 when t = 0.

The two relations u(t, 0) = u(t, 1) = 0 hold because each of v1, v2, v3 vanish
at x = 0 and x = 1. The verification is complete.

Exercises 9.1

Eigenanalysis. Classify as true or
false. If false, then correct the text to
make it true.

1. The purpose of eigenanalysis is to
find a coordinate system.

2. Diagonal matrices have all their
eigenvalues on the last row.

3. Eigenvalues are scale factors.

4. Eigenvalues of a diagonal matrix
cannot be zero.

5. Eigenvectors v of a diagonal ma-
trix can be zero.

6. Eigenpairs (λ,v) of a diagonal
matrix A satisfy the equation
Av = λv.

Eigenpairs of a Diagonal Matrix.
Find the eigenpairs of A.

7.
(

2 0
0 3

)

8.
(

1 0
0 4

)

9.

 2 0 0
0 3 0
0 0 1


10.

 0 2 0
0 1 0
0 0 1



11.

 7 0 0
0 2 0
0 0 −6


12.

 2 0 0
0 −4 0
0 0 −1


Fourier’s Model.

13.

Eigenanalysis Facts.

14.

Eigenpair Packages.
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15.

The Equation AP = PD.

16.

Matrix Eigenanalysis Method.

17.

Basis of Eigenvectors.

18.

Independence of Eigenvectors.

19.

Diagonalization Theory.

20.

Non-diagonalizable Matrices.

21.

Distinct Eigenvalues.

22.
(

2 6
5 3

)
23.

(
1 2
2 4

)

24.

 2 6 2
9 3 9
1 3 1


25.

 0 2 0
0 1 0
3 0 3



26.

 7 12 6
2 2 2
−7 −12 −6


27.

 2 2 −6
−3 −4 3
−3 −4 −1


Computing 2× 2 Eigenpairs.

28.

Computing 2 × 2 Complex Eigen-
pairs.

29.

Computing 3× 3 Eigenpairs.

30.

Decomposition A = PDP−1.

31.

Diagonalization I

32.

Diagonalization II

33.

Non-diagonalizable Matrices

34.

Fourier’s Heat Model

35.
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9.2 Eigenanalysis II

Discrete Dynamical Systems

The matrix equation

y =
1
10

 5 4 0
3 5 3
2 1 7

 x(1)

predicts the state y of a system initially in state x after some fixed
elapsed time. The 3×3 matrix A in (1) represents the dynamics which
changes the state x into state y. Accordingly, an equation y = Ax
is called a discrete dynamical system and A is called a transition
matrix.

The eigenpairs of A in (1) are shown in details page 528 to be (1,v1),
(1/2,v2), (1/5,v3) where the eigenvectors are given by

v1 =

 1
5/4

13/12

 , v2 =

 −1
0
1

 , v3 =

 −4
3
1

 .(2)

Market Shares. A typical application of discrete dynamical systems
is telephone long distance company market shares x1, x2, x3, which are
fractions of the total market for long distance service. If three companies
provide all the services, then their market fractions add to one: x1 +
x2 + x3 = 1. The equation y = Ax gives the market shares of the three
companies after a fixed time period, say one year. Then market shares
after one, two and three years are given by the iterates

y1 = Ax,
y2 = A2x,
y3 = A3x.

Fourier’s eigenanalysis model gives succinct and useful formulas for the
iterates: if x = a1v1 + a2v2 + a3v3, then

y1 = Ax = a1λ1v1 + a2λ2v2 + a3λ3v3,
y2 = A2x = a1λ

2
1v1 + a2λ

2
2v2 + a3λ

2
3v3,

y3 = A3x = a1λ
3
1v1 + a2λ

3
2v2 + a3λ

3
3v3.

The advantage of Fourier’s model is that an iterate An is computed
directly, without computing the powers before it. Because λ1 = 1 and
limn→∞ |λ2|n = limn→∞ |λ3|n = 0, then for large n

yn ≈ a1(1)v1 + a2(0)v2 + a3(0)v3 =

 a1

5a1/4
13a1/12

 .
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The numbers a1, a2, a3 are related to x1, x2, x3 by the equations a1 −
a2 − 4a3 = x1, 5a1/4 + 3a3 = x2, 13a1/12 + a2 + a3 = x3. Due to
x1 +x2 +x3 = 1, the value of a1 is known, a1 = 3/10. The three market
shares after a long time period are therefore predicted to be 3/10, 3/8,
39/120. The reader should verify the identity 3

10 + 3
8 + 39

120 = 1.

Stochastic Matrices. The special matrix A in (1) is a stochastic
matrix, defined by the properties

n∑
i=1

aij = 1, akj ≥ 0, k, j = 1, . . . , n.

The definition is memorized by the phrase each column sum is one.
Stochastic matrices appear in Leontief input-output models, pop-
ularized by 1973 Nobel Prize economist Wassily Leontief.

Theorem 9 (Stochastic Matrix Properties)
Let A be a stochastic matrix. Then

(a) If x is a vector with x1 + · · · + xn = 1, then y = Ax satisfies
y1 + · · ·+ yn = 1.

(b) If v is the sum of the columns of I, then ATv = v. Therefore,
(1,v) is an eigenpair of AT .

(c) The characteristic equation det(A− λI) = 0 has a root λ = 1.
All other roots satisfy |λ| < 1.

Proof of Stochastic Matrix Properties:
(a)

∑n
i=1 yi =

∑n
i=1

∑n
j=1 aijxj =

∑n
j=1 (

∑n
i=1 aij)xj =

∑n
j=1(1)xj = 1.

(b) Entry j of ATv is given by the sum
∑n
i=1 aij = 1.

(c) Apply (b) and the determinant rule det(BT ) = det(B) with B = A − λI
to obtain eigenvalue 1. Any other root λ of the characteristic equation has a
corresponding eigenvector x satisfying (A− λI)x = 0. Let index j be selected
such that M = |xj | > 0 has largest magnitude. Then

∑
i6=j aijxj+(ajj−λ)xj =

0 implies λ =
∑n
i=1 aij

xj
M

. Because
∑n
i=1 aij = 1, λ is a convex combination of

n complex numbers {xj/M}nj=1. These complex numbers are located in the unit
disk, a convex set, therefore λ is located in the unit disk. By induction on n,
motivated by the geometry for n = 2, it is argued that |λ| = 1 cannot happen for
λ an eigenvalue different from 1 (details left to the reader). Therefore, |λ| < 1.

Details for the eigenpairs of (1): To be computed are the eigenvalues and
eigenvectors for the 3× 3 matrix

A =
1
10

 5 4 0
3 5 3
2 1 7

 .

Eigenvalues. The roots λ = 1, 1/2, 1/5 of the characteristic equation det(A−
λI) = 0 are found by these details:
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0 = det(A− λI)

=

∣∣∣∣∣∣
.5− λ .4 0
.3 .5− λ .3
.2 .1 .7− λ

∣∣∣∣∣∣
=

1
10
− 8

10
λ+

17
10
λ2 − λ3 Expand by cofactors.

= − 1
10

(λ− 1)(2λ− 1)(5λ− 1) Factor the cubic.

The factorization was found by long division of the cubic by λ − 1, the idea
born from the fact that 1 is a root and therefore λ − 1 is a factor (the Factor
Theorem of college algebra). An answer check in maple:

with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
B:=evalm(A-lambda*diag(1,1,1));
eigenvals(A); factor(det(B));

Eigenpairs. To each eigenvalue λ = 1, 1/2, 1/5 corresponds one rref calcula-
tion, to find the eigenvectors paired to λ. The three eigenvectors are given by
(2). The details:

Eigenvalue λ = 1.

A− (1)I =

 .5− 1 .4 0
.3 .5− 1 .3
.2 .1 .7− 1


≈

 −5 4 0
3 −5 3
2 1 −3

 Multiply rule, multiplier=10.

≈

 0 0 0
3 −5 3
2 1 −3

 Combination rule twice.

≈

 0 0 0
1 −6 6
2 1 −3

 Combination rule.

≈

 0 0 0
1 −6 6
0 13 −15

 Combination rule.

≈

 0 0 0
1 0 − 12

13
0 1 − 15

13

 Multiply rule and combination
rule.

≈

 1 0 − 12
13

0 1 − 15
13

0 0 0

 Swap rule.

= rref(A− (1)I)

An equivalent reduced echelon system is x− 12z/13 = 0, y − 15z/13 = 0. The
free variable assignment is z = t1 and then x = 12t1/13, y = 15t1/13. Let
x = 1; then t1 = 13/12. An eigenvector is given by x = 1, y = 4/5, z = 13/12.

Eigenvalue λ = 1/2.
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A− (1/2)I =

 .5− .5 .4 0
.3 .5− .5 .3
.2 .1 .7− .5


=

 0 4 0
3 0 3
2 1 2

 Multiply rule, factor=10.

≈

 0 1 0
1 0 1
0 0 0

 Combination and multiply
rules.

= rref(A− .5I)

An eigenvector is found from the equivalent reduced echelon system y = 0,
x+ z = 0 to be x = −1, y = 0, z = 1.

Eigenvalue λ = 1/5.

A− (1/5)I =

 .5− .2 .4 0
.3 .5− .2 .3
.2 .1 .7− .2


≈

 3 4 0
1 1 1
2 1 5

 Multiply rule.

≈

 1 0 4
0 1 −3
0 0 0

 Combination rule.

= rref(A− (1/5)I)

An eigenvector is found from the equivalent reduced echelon system x+4z = 0,
y − 3z = 0 to be x = −4, y = 3, z = 1.

An answer check in maple:

with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
eigenvects(A);

Coupled and Uncoupled Systems

The linear system of differential equations

x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3,

(3)

is called coupled, whereas the linear system of growth-decay equations

y′1 = −3y1,
y′2 = −y2,
y′3 = −2y3,

(4)
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is called uncoupled. The terminology uncoupled means that each dif-
ferential equation in system (4) depends on exactly one variable, e.g.,
y′1 = −3y1 depends only on variable y1. In a coupled system, one of the
differential equations must involve two or more variables.

Matrix characterization. Coupled system (3) and uncoupled sys-
tem (4) can be written in matrix form, x′ = Ax and y′ = Dy, with
coefficient matrices

A =

−1 0 −1
4 −1 −3
2 0 −4

 and D =

−3 0 0
0 −1 0
0 0 −2

 .
If the coefficient matrix is diagonal, then the system is uncoupled. If
the coefficient matrix is not diagonal, then one of the corresponding
differential equations involves two or more variables and the system is
called coupled or cross-coupled.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations
of the form u′ = au. The solution formula u = ceat then leads to the
general solution of the system of equations. For instance, system (4) has
general solution

y1 = c1e
−3t,

y2 = c2e
−t,

y3 = c3e
−2t,

(5)

where c1, c2, c3 are arbitrary constants. The number of constants
equals the dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If v1, v2, v3 are three independent vectors in R3, then the matrix

P = aug(v1,v2,v3)

is invertible. The columns v1, v2, v3 of P are called a coordinate
system. The matrix P is called a change of coordinates.

Every vector v in R3 can be uniquely expressed as

v = t1v1 + t2v2 + t3v3.

The values t1, t2, t3 are called the coordinates of v relative to the basis
v1, v2, v3, or more succinctly, the coordinates of v relative to P .
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Viewpoint of a Driver

The physical meaning of a coordinate system v1, v2, v3 can be under-
stood by considering an auto going up a mountain road. Choose orthog-
onal v1 and v2 to give positions in the driver’s seat and define v3 be the
seat-back direction. These are local coordinates as viewed from the
driver’s seat. The road map coordinates x, y and the altitude z define
the global coordinates for the auto’s position p = x~ı+ y~+ z~k.

v1

v3

v2

Figure 1. An auto seat.
The vectors v1(t), v2(t), v3(t) form
an orthogonal triad which is a local
coordinate system from the driver’s
viewpoint. The orthogonal triad
changes continuously in t.

Change of Coordinates

A coordinate change from y to x is a linear algebraic equation x = Py
where the n× n matrix P is required to be invertible (det(P ) 6= 0). To
illustrate, an instance of a change of coordinates from y to x is given by
the linear equations

x =

1 0 1
1 1 −1
2 0 1

y or


x1 = y1 + y3,
x2 = y1 + y2 − y3,
x3 = 2y1 + y3.

(6)

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems.
The idea is to substitute a change of variables into a given uncoupled
system. Consider a diagonal system y′ = Dy, like (4), and a change of
variables x = Py, like (6). Differential calculus applies to give

x′ = (Py)′

= Py′

= PDy
= PDP−1 x.

(7)

The matrix A = PDP−1 is not triangular in general, and therefore the
change of variables produces a cross-coupled system.

An illustration. To give an example, substitute into uncoupled system
(4) the change of variable equations (6). Use equation (7) to obtain

x′ =

 −1 0 −1
4 −1 −3
2 0 −4

x or


x′1 = −x1 − x3,
x′2 = 4x1 − x2 − 3x3,
x′3 = 2x1 − 4x3.

(8)
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This cross-coupled system (8) can be solved using relations (6), (5)
and x = Py to give the general solution x1

x2

x3

 =

 1 0 1
1 1 −1
2 0 1


 c1e

−3t

c2e
−t

c3e
−2t

 .(9)

Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system x′(t) = Ax(t) be subjected to a
change of variables x = Py which converts the system into
a completely uncoupled system for variable y(t)?

Under certain circumstances, this is true, and it leads to an elegant and
especially simple expression for the general solution of the differential
system, as in (9):

x(t) = Py(t).

The task of eigenanalysis is to simultaneously calculate from a cross-
coupled system x′ = Ax the change of variables x = Py and the diagonal
matrix D in the uncoupled system y′ = Dy

The eigenanalysis coordinate system is the set of n independent
vectors extracted from the columns of P . In this coordinate system, the
cross-coupled differential system (3) simplifies into a system of uncou-
pled growth-decay equations (4). Hence the terminology, the method of
simplifying coordinates.

Eigenanalysis and Footballs

An ellipsoid or football is a geometric object de-
scribed by its semi-axes (see Figure 2). In
the vector representation, the semi-axis direc-
tions are unit vectors v1, v2, v3 and the semi-
axis lengths are the constants a, b, c. The vec-
tors av1, bv2, cv3 form an orthogonal triad.

av1

bv2

cv3

Figure 2. A football.
An ellipsoid is built from
orthonormal semi-axis directions v1,
v2, v3 and the semi-axis lengths a, b,
c. The semi-axis vectors are av1,
bv2, cv3.
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Two vectors a, b are orthogonal if both are nonzero and their dot product
a · b is zero. Vectors are orthonormal if each has unit length and they
are pairwise orthogonal. The orthogonal triad is an invariant of the
ellipsoid’s algebraic representations. Algebra does not change the triad:
the invariants av1, bv2, cv3 must somehow be hidden in the equations
that represent the football.

Algebraic eigenanalysis finds the hidden invariant triad av1, bv2, cv3

from the ellipsoid’s algebraic equations. Suppose, for instance, that the
equation of the ellipsoid is supplied as

x2 + 4y2 + xy + 4z2 = 16.

A symmetric matrix A is constructed in order to write the equation in the
form XT AX = 16, where X has components x, y, z. The replacement
equation is4

(
x y z

)  1 1/2 0
1/2 4 0
0 0 4


 x
y
z

 = 16.(10)

It is the 3× 3 symmetric matrix A in (10) that is subjected to algebraic
eigenanalysis. The matrix calculation will compute the unit semi-axis
directions v1, v2, v3, called the hidden vectors or eigenvectors. The
semi-axis lengths a, b, c are computed at the same time, by finding
the hidden values5 or eigenvalues λ1, λ2, λ3, known to satisfy the
relations

λ1 =
16
a2
, λ2 =

16
b2
, λ3 =

16
c2
.

For the illustration, the football dimensions are a = 2, b = 1.98, c = 4.17.
Details of the computation are delayed until page 536.

The Ellipse and Eigenanalysis

An ellipse equation in standard form is λ1x
2 + λ2y

2 = 1, where λ1 =
1/a2, λ2 = 1/b2 are expressed in terms of the semi-axis lengths a, b. The
expression λ1x

2 + λ2y
2 is called a quadratic form. The study of the

ellipse λ1x
2 + λ2y

2 = 1 is equivalent to the study of the quadratic form
equation

rTDr = 1, where r =

(
x
y

)
, D =

(
λ1 0
0 λ2

)
.

4The reader should pause here and multiply matrices in order to verify this state-
ment. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.

5The terminology hidden arises because neither the semi-axis lengths nor the semi-
axis directions are revealed directly by the ellipsoid equation.
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Cross-terms. An ellipse may be represented by an equation in a uv-
coordinate system having a cross-term uv, e.g., 4u2+8uv+10v2 = 5. The
expression 4u2 + 8uv + 10v2 is again called a quadratic form. Calculus
courses provide methods to eliminate the cross-term and represent the
equation in standard form, by a rotation(

u
v

)
= R

(
x
y

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
.

The angle θ in the rotation matrix R represents the rotation of uv-
coordinates into standard xy-coordinates.

Eigenanalysis computes angle θ through the columns of R, which are the
unit semi-axis directions v1, v2 for the ellipse 4u2 + 8uv + 10v2 = 5. If
the quadratic form 4u2 + 8uv + 10v2 is represented as rT A r, then

r =

(
u
v

)
, A =

(
4 4
4 10

)
, R =

1√
5

(
1 −2
2 1

)
,

λ1 = 12, v1 =
1√
5

(
1
2

)
, λ2 = 2, v2 =

1√
5

(
−2

1

)
.

Rotation matrix angle θ. The components of eigenvector v1 can be
used to determine θ = −63.4◦:(

cos θ
− sin θ

)
=

1√
5

(
1
2

)
or

 cos θ = 1√
5
,

− sin θ = 2√
5
.

The interpretation of angle θ: rotate the orthonormal basis v1, v2 by
angle θ = −63.4◦ in order to obtain the standard unit basis vectors i,
j. Most calculus texts discuss only the inverse rotation, where x, y are
given in terms of u, v. In these references, θ is the negative of the value
given here, due to a different geometric viewpoint.6

Semi-axis lengths. The lengths a ≈ 1.55, b ≈ 0.63 for the ellipse
4u2 +8uv+10v2 = 5 are computed from the eigenvalues λ1 = 12, λ2 = 2
of matrix A by the equations

λ1

5
=

1
a2
,

λ2

5
=

1
b2
.

Geometry. The ellipse 4u2 + 8uv + 10v2 = 5 is completely determined
by the orthogonal semi-axis vectors av1, bv2. The rotation R is a rigid
motion which maps these vectors into a~ı, b~, where ~ı and ~ are the stan-
dard unit vectors in the plane.

The θ-rotation R maps 4u2 +8uv+10v2 = 5 into the xy-equation λ1x
2 +

λ2y
2 = 5, where λ1, λ2 are the eigenvalues of A. To see why, let r = Rs

where s =
(
x y

)T
. Then rTAr = sT (RTAR)s. Using RTR = I gives

R−1 = RT and RTAR = diag(λ1, λ2). Finally, rTAr = λ1x
2 + λ2y

2.
6Rod Serling, author of The Twilight Zone, enjoyed the view from the other side

of the mirror.
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Orthogonal Triad Computation

Let’s compute the semiaxis directions v1, v2, v3 for the ellipsoid x2 +
4y2 + xy + 4z2 = 16. To be applied is Theorem 7. As explained on
page 534, the starting point is to represent the ellipsoid equation as a
quadratic form XTAX = 16, where the symmetric matrix A is defined
by

A =

 1 1/2 0
1/2 4 0
0 0 4

 .
College algebra. The characteristic polynomial det(A − λI) = 0
determines the eigenvalues or hidden values of the matrix A. By cofactor
expansion, this polynomial equation is

(4− λ)((1− λ)(4− λ)− 1/4) = 0

with roots 4, 5/2 +
√

10/2, 5/2−
√

10/2.

Eigenpairs. It will be shown that three eigenpairs are

λ1 = 4, x1 =

 0
0
1

 ,
λ2 =

5 +
√

10
2

, x2 =


√

10− 3
1
0

 ,

λ3 =
5−
√

10
2

, x3 =


√

10 + 3
−1
0

 .
The vector norms of the eigenvectors are given by ‖x1‖ = 1, ‖x2‖ =√

20 + 6
√

10, ‖x3‖ =
√

20− 6
√

10. The orthonormal semi-axis direc-
tions vk = xk/‖xk‖, k = 1, 2, 3, are then given by the formulas

v1 =

 0
0
1

 , v2 =


√

10−3√
20−6

√
10

1√
20−6

√
10

0

 , v3 =


√

10+3√
20+6

√
10

−1√
20+6

√
10

0

 .
Frame sequence details.

aug(A− λ1I,0) =

 1− 4 1/2 0 0
1/2 4− 4 0 0
0 0 4− 4 0



≈

 1 0 0 0
0 1 0 0
0 0 0 0

 Used combination, multiply
and swap rules. Found rref.
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aug(A− λ2I,0) =


−3−

√
10

2
1
2 0 0

1
2

3−
√

10
2 0 0

0 0 3−
√

10
2 0



≈

 1 3−
√

10 0 0
0 0 1 0
0 0 0 0

 All three rules.

aug(A− λ3I,0) =


−3+

√
10

2
1
2 0 0

1
2

3+
√

10
2 0 0

0 0 3+
√

10
2 0



≈

 1 3 +
√

10 0 0
0 0 1 0
0 0 0 0

 All three rules.

Solving the corresponding reduced echelon systems gives the preceding
formulas for the eigenvectors x1, x2, x3. The equation for the ellipsoid
is λ1X

2 + λ2Y
2 + λ3Z

2 = 16, where the multipliers of the square terms
are the eigenvalues of A and X, Y , Z define the new coordinate system
determined by the eigenvectors of A. This equation can be re-written
in the form X2/a2 + Y 2/b2 + Z2/c2 = 1, provided the semi-axis lengths
a, b, c are defined by the relations a2 = 16/λ1, b2 = 16/λ2, c2 = 16/λ3.
After computation, a = 2, b = 1.98, c = 4.17.
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9.3 Advanced Topics in Linear Algebra

Diagonalization and Jordan’s Theorem

A system of differential equations x′ = Ax can be transformed to an
uncoupled system y′ = diag(λ1, . . . , λn)y by a change of variables x =
Py, provided P is invertible and A satisfies the relation

AP = P diag(λ1, . . . , λn).(1)

A matrix A is said to be diagonalizable provided (1) holds. This equa-
tion is equivalent to the system of equations Avk = λkvk, k = 1, . . . , n,
where v1, . . . , vn are the columns of matrix P . Since P is assumed
invertible, each of its columns are nonzero, and therefore (λk,vk) is an
eigenpair of A, 1 ≤ k ≤ n. The values λk need not be distinct (e.g., all
λk = 1 if A is the identity). This proves:

Theorem 10 (Diagonalization)
An n×n matrix A is diagonalizable if and only if A has n eigenpairs (λk,vk),
1 ≤ k ≤ n, with v1, . . . , vn independent. In this case,

A = PDP−1

where D = diag(λ1, . . . , λn) and the matrix P has columns v1, . . . , vn.

Theorem 11 (Jordan’s theorem)
Any n× n matrix A can be represented in the form

A = PTP−1

where P is invertible and T is upper triangular. The diagonal entries of T
are eigenvalues of A.

Proof: We proceed by induction on the dimension n of A. For n = 1 there is
nothing to prove. Assume the result for dimension n, and let’s prove it when A is
(n+1)×(n+1). Choose an eigenpair (λ1,v1) of A with v1 6= 0. Complete a basis
v1, . . . , vn+1 for Rn+1 and define V = aug(v1, . . . ,vn+1). Then V −1AV =(
λ1 B
0 A1

)
for some matrices B and A1. The induction hypothesis implies

there is an invertible n× n matrix P1 and an upper triangular matrix T1 such

that A1 = P1T1P
−1
1 . Let R =

(
1 0
0 P1

)
and T =

(
λ1 BT1

0 T1

)
. Then

T is upper triangular and (V −1AV )R = RT , which implies A = PTP−1 for
P = V R. The induction is complete.
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Cayley-Hamilton Identity

A celebrated and deep result for powers of matrices was discovered by
Cayley and Hamilton (see [?]), which says that an n×n matrix A satisfies
its own characteristic equation. More precisely:

Theorem 12 (Cayley-Hamilton)
Let det(A− λI) be expanded as the nth degree polynomial

p(λ) =
n∑
j=0

cjλ
j ,

for some coefficients c0, . . . , cn−1 and cn = (−1)n. Then A satisfies the
equation p(λ) = 0, that is,

p(A) ≡
n∑
j=0

cjA
j = 0.

In factored form in terms of the eigenvalues {λj}nj=1 (duplicates possible),
the matrix equation p(A) = 0 can be written as

(−1)n(A− λ1I)(A− λ2I) · · · (A− λnI) = 0.

Proof: If A is diagonalizable, AP = P diag(λ1, . . . , λn), then the proof is
obtained from the simple expansion

Aj = P diag(λj1, . . . , λ
j
n)P−1,

because summing across this identity leads to

p(A) =
∑n
j=0 cjA

j

= P
(∑n

j=0 cj diag(λj1, . . . , λ
j
n)
)
P−1

= P diag(p(λ1), . . . , p(λn))P−1

= P diag(0, . . . , 0)P−1

= 0.

If A is not diagonalizable, then this proof fails. To handle the general case,
we apply Jordan’s theorem, which says that A = PTP−1 where T is upper
triangular (instead of diagonal) and the not necessarily distinct eigenvalues λ1,
. . . , λn of A appear on the diagonal of T . Using Jordan’s theorem, define

Aε = P (T + εdiag(1, 2, . . . , n))P−1.

For small ε > 0, the matrix Aε has distinct eigenvalues λj+εj, 1 ≤ j ≤ n. Then
the diagonalizable case implies that Aε satisfies its characteristic equation. Let
pε(λ) = det(Aε − λI). Use 0 = limε→0 pε(Aε) = p(A) to complete the proof.
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An Extension of Jordan’s Theorem

Theorem 13 (Jordan’s Extension)
Any n× n matrix A can be represented in the block triangular form

A = PTP−1, T = diag(T1, . . . , Tk),

where P is invertible and each matrix Ti is upper triangular with diagonal
entries equal to a single eigenvalue of A.

The proof of the theorem is based upon Jordan’s theorem, and proceeds
by induction. The reader is invited to try to find a proof, or read further
in the text, where this theorem is presented as a special case of the
Jordan decomposition.

Solving Block Triangular Differential Systems

A matrix differential system y′(t) = Ty(t) with T block upper triangular
splits into scalar equations which can be solved by elementary methods
for first order scalar differential equations. To illustrate, consider the
system

y′1 = 3y1 + x2 + y3,
y′2 = 3y2 + y3,
y′3 = 2y3.

The techniques that apply are the growth-decay formula for u′ = ku and
the integrating factor method for u′ = ku + p(t). Working backwards
from the last equation, using back-substitution, gives

y3 = c3e
2t,

y2 = c2e
3t − c3e2t,

y1 = (c1 + c2t)e3t.

What has been said here applies to any triangular system y′(t) = Ty(t),
in order to write an exact formula for the solution y(t).

If A is an n×n matrix, then Jordan’s theorem gives A = PTP−1 with T
block upper triangular and P invertible. The change of variable x(t) =
Py(t) changes x′(t) = Ax(t) into the block triangular system y′(t) =
Ty(t).

There is no special condition on A, to effect the change of variable x(t) =
Py(t). The solution x(t) of x′(t) = Ax(t) is a product of the invertible
matrix P and a column vector y(t); the latter is the solution of the
block triangular system y′(t) = Ty(t), obtained by growth-decay and
integrating factor methods.

The importance of this idea is to provide a solid method for solving
any system x′(t) = Ax(t). In later sections, we outline how to find
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the matrix P and the matrix T , in Jordan’s extension A = PTP−1.
The additional theory provides efficient matrix methods for solving any
system x′(t) = Ax(t).

Symmetric Matrices and Orthogonality

Described here is a process due to Gram-Schmidt for replacing a given
set of independent eigenvectors by another set of eigenvectors which are
of unit length and orthogonal (dot product zero or 90 degrees apart).
The process, which applies to any independent set of vectors, is especially
useful in the case of eigenanalysis of a symmetric matrix: AT = A.

Unit eigenvectors. An eigenpair (λ,x) of A can always be selected
so that ‖x‖ = 1. If ‖x‖ 6= 1, then replace eigenvector x by the scalar
multiple cx, where c = 1/‖x‖. By this small change, it can be assumed
that the eigenvector has unit length. If in addition the eigenvectors are
orthogonal, then the eigenvectors are said to be orthonormal.

Theorem 14 (Orthogonality of Eigenvectors)
Assume that n × n matrix A is symmetric, AT = A. If (α,x) and (β,y)
are eigenpairs of A with α 6= β, then x and y are orthogonal: x · y = 0.

Proof: To prove this result, compute αx · y = (Ax)Ty = xTATy = xTAy.
Also, βx ·y = xTAy. Subtracting the relations implies (α− β)x ·y = 0, giving
x · y = 0 due to α 6= β. The proof is complete.

Theorem 15 (Real Eigenvalues)
If AT = A, then all eigenvalues of A are real. Consequently, matrix A has
n real eigenvalues counted according to multiplicity.

Proof: The second statement is due to the fundamental theorem of algebra.
To prove the eigenvalues are real, it suffices to prove λ = λ when Av = λv
with v 6= 0. We admit that v may have complex entries. We will use A = A
(A is real). Take the complex conjugate across Av = λv to obtain Av = λv.
TransposeAv = λv to obtain vTAT = λvT and then conclude vTA = λvT from
AT = A. Multiply this equation by v on the right to obtain vTAv = λvTv.
Then multiply Av = λv by vT on the left to obtain vTAv = λvTv. Then we
have

λvTv = λvTv.

Because vTv =
∑n
j=1 |vj |2 > 0, then λ = λ and λ is real. The proof is complete.

Theorem 16 (Independence of Orthogonal Sets)
Let v1, . . . , vk be a set of nonzero orthogonal vectors. Then this set is
independent.



542 Eigenanalysis

Proof: Form the equation c1v1 + · · · + ckvk = 0, the plan being to solve for
c1, . . . , ck. Take the dot product of the equation with v1. Then

c1v1 · v1 + · · ·+ ckv1 · vk = v1 · 0.

All terms on the left side except one are zero, and the right side is zero also,
leaving the relation

c1v1 · v1 = 0.

Because v1 is not zero, then c1 = 0. The process can be applied to the remaining
coefficients, resulting in

c1 = c2 = · · · = ck = 0,

which proves independence of the vectors.

The Gram-Schmidt process

The eigenvectors of a symmetric matrix A may be constructed to be
orthogonal. First of all, observe that eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal by Theorem 14. It remains to construct
from k independent eigenvectors x1, . . . , xk, corresponding to a single
eigenvalue λ, another set of independent eigenvectors y1, . . . , yk for λ
which are pairwise orthogonal. The idea, due to Gram-Schmidt, applies
to any set of k independent vectors.

Application of the Gram-Schmidt process can be illustrated by example:
let (−1,v1), (2,v2), (2,v3), (2,v4) be eigenpairs of a 4 × 4 symmetric
matrix A. Then v1 is orthogonal to v2, v3, v4. The vectors v2, v3,
v4 belong to eigenvalue λ = 2, but they are not necessarily orthogonal.
The Gram-Schmidt process replaces these vectors by y2, y3, y4 which
are pairwise orthogonal. The result is that eigenvectors v1, y2, y3, y4

are pairwise orthogonal.

Theorem 17 (Gram-Schmidt)
Let x1, . . . , xk be independent n-vectors. The set of vectors y1, . . . ,
yk constructed below as linear combinations of x1, . . . , xk are pairwise
orthogonal and independent.

y1 = x1

y2 = x2 −
x2 · y1

y1 · y1
y1

y3 = x3 −
x3 · y1

y1 · y1
y1 −

x3 · y2

y2 · y2
y2

...

yk = xk −
xk · y1

y1 · y1
y1 − · · · −

xk · yk−1

yk−1 · yk−1
yk−1
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Proof: Induction will be applied on k to show that y1, . . . , yk are nonzero
and orthogonal. If k = 1, then there is just one nonzero vector constructed
y1 = x1. Orthogonality for k = 1 is not discussed because there are no pairs to
test. Assume the result holds for k − 1 vectors. Let’s verify that it holds for k
vectors, k > 1. Assume orthogonality yi ·yj = 0 and yi 6= 0 for 1 ≤ i, j ≤ k−1.
It remains to test yi · yk = 0 for 1 ≤ i ≤ k − 1 and yk 6= 0. The test depends
upon the identity

yi · yk = yi · xk −
k−1∑
j=1

xk · yj
yj · yj

yi · yj ,

which is obtained from the formula for yk by taking the dot product with yi. In
the identity, yi ·yj = 0 by the induction hypothesis for 1 ≤ j ≤ k−1 and j 6= i.
Therefore, the summation in the identity contains just the term for index j = i,
and the contribution is yi · xk. This contribution cancels the leading term on
the right in the identity, resulting in the orthogonality relation yi · yk = 0. If
yk = 0, then xk is a linear combination of y1, . . . , yk−1. But each yj is a linear
combination of {xi}ji=1, therefore yk = 0 implies xk is a linear combination
of x1, . . . , xk−1, a contradiction to the independence of {xi}ki=1. The proof is
complete.

Orthogonal Projection

Reproduced here is the basic material on shadow projection, for the
convenience of the reader. The ideas are then extended to obtain the
orthogonal projection onto a subspace V of Rn. Finally, the orthogonal
projection formula is related to the Gram-Schmidt equations.

The shadow projection of vector ~X onto the direction of vector ~Y is
the number d defined by

d =
~X · ~Y
|~Y |

.

The triangle determined by ~X and d
~Y

|~Y |
is a right triangle.

d

X

Y Figure 3. Shadow projection d of
vector X onto the direction of
vector Y.

The vector shadow projection of ~X onto the line L through the origin
in the direction of ~Y is defined by

proj~Y ( ~X) = d
~Y

|~Y |
=

~X · ~Y
~Y · ~Y

~Y .
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Orthogonal projection for dimension 1. The extension of the shadow
projection formula to a subspace V of Rn begins with unitizing ~Y to iso-
late the vector direction u = ~Y /‖~Y ‖ of line L. Define the subspace
V = span{u}. Then V is identical to L. We define the orthogonal
projection by the formula

ProjV (x) = (u · x)u, V = span{u}.

The reader is asked to verify that

proj~Y (x) = du = ProjV (x).

These equalities mean that the orthogonal projection is the vector shadow
projection when V is one dimensional.

Orthogonal projection for dimension k. Consider a subspace V of
Rn given as the span of orthonormal vectors u1, . . . , uk. Define the
orthogonal projection by the formula

ProjV (x) =
k∑
j=1

(uj · x)uj , V = span{u1, . . . ,uk}.

Orthogonal projection and Gram-Schmidt. Define y1, . . . , yk
by the Gram-Schmidt relations on page 542. Let uj = yj/‖yj‖ for
j = 1, . . . , k. Then Vj−1 = span{u1, . . . ,uj−1} is a subspace of Rn of
dimension j − 1 with orthonormal basis u1, . . . , uj−1 and

yj = xj −
xj · y1

y1 · y1
y1 − · · · −

xk · yj−1

yj−1 · yj−1
yj−1

= xj −ProjVj−1
(xj).

The Near Point Theorem

Developed here is the characterization of the orthogonal projection of a
vector x onto a subspace V as the unique point v in V which minimizes
‖x− v‖, that is, the point in V closest to x.

In remembering the Gram-Schmidt formulas, and in the use of the or-
thogonal projection in proofs and constructions, the following key theo-
rem is useful.

Theorem 18 (Orthogonal Projection Properties)
Let V be the span of orthonormal vectors u1, . . . , uk.

(a) Every vector in V has an orthogonal expansion v =
∑k
j=1(v · uj)uj .

(b) The vector ProjV (x) is a vector in the subspace V .

(c) The vector w = x−ProjV (x) is orthogonal to every vector in V .

(d) Among all vectors v in V , the minimum value of ‖x − v‖ is uniquely
obtained by the orthogonal projection v = ProjV (x).
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Proof:
(a): Every element v in V is a linear combination of basis elements:

v = c1u1 + · · ·+ ckuk.

Take the dot product of this relation with basis element uj . By orthogonality,
cj = v · uj .
(b): Because ProjV (x) is a linear combination of basis elements of V , then (b)
holds.

(c): Let’s compute the dot product of w and v. We will use the orthogonal
expansion from (a).

w · v = (x−ProjV (x)) · v

= x · v −

 k∑
j=1

(x · uj)uj

 · v
=

k∑
j=1

(v · uj)(uj · x)−
k∑
j=1

(x · uj)(uj · v)

= 0.

(d): Begin with the Pythagorean identity

‖a‖2 + ‖b‖2 = ‖a + b‖2

valid exactly when a · b = 0 (a right triangle, θ = 90◦). Using an arbitrary v
in V , define a = ProjV (x) − v and b = x −ProjV (x). By (b), vector a is in
V . Because of (c), then a · b = 0. This gives the identity

‖ProjV (x)− v‖2 + ‖x−ProjV (x)‖2 = ‖x− v‖2,

which establishes ‖x−ProjV (x)‖ < ‖x−v‖ except for the unique v such that
‖ProjV (x)− v‖ = 0.

The proof is complete.

Theorem 19 (Near Point to a Subspace)
Let V be a subspace of Rn and x a vector not in V . The near point to x
in V is the orthogonal projection of x onto V . This point is characterized
as the minimum of ‖x− v‖ over all vectors v in the subspace V .

Proof: Apply (d) of the preceding theorem.

Theorem 20 (Cross Product and Projections)
The cross product direction a × b can be computed as c − ProjV (c), by
selecting a direction c not in V = span{a,b}.

Proof: The cross product makes sense only in R3. Subspace V is two di-
mensional when a, b are independent, and Gram-Schmidt applies to find an
orthonormal basis u1, u2. By (c) of Theorem 18, the vector c−ProjV (c) has
the same or opposite direction to the cross product.
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The QR Decomposition

The Gram-Schmidt formulas can be organized as matrix multiplication
A = QR, where x1, . . . , xn are the independent columns of A, and Q
has columns equal to the Gram-Schmidt orthonormal vectors u1, . . . ,
un, which are the unitized Gram-Schmidt vectors.

Theorem 21 (The QR-Decomposition)
Let the m × n matrix A have independent columns x1, . . . , xn. Then
there is an upper triangular matrix R with positive diagonal entries and an
orthonormal matrix Q such that

A = QR.

Proof: Let y1, . . . , yn be the Gram-Schmidt orthogonal vectors given by
relations on page 542. Define uk = yk/‖yk‖ and rkk = ‖yk‖ for k = 1, . . . , n,
and otherwise rij = ui · xj . Let Q = aug(u1, . . . ,un). Then

x1 = r11u1,
x2 = r22u2 + r21u1,
x3 = r33u3 + r31u1 + r32u2,

...
xn = rnnun + rn1u1 + · · ·+ rnn−1un−1.

(2)

It follows from (2) and matrix multiplication that A = QR. The proof is
complete.

Theorem 22 (Matrices Q and R in A = QR)
Let the m × n matrix A have independent columns x1, . . . , xn. Let
y1, . . . , yn be the Gram-Schmidt orthogonal vectors given by relations
on page 542. Define uk = yk/‖yk‖. Then AQ = QR is satisfied by
Q = aug(u1, . . . ,un) and

R =


‖y1‖ u1 · x2 u1 · x3 · · · u1 · xn

0 ‖y2‖ u2 · x3 · · · u2 · xn
...

...
... · · ·

...
0 0 0 · · · ‖yn‖

 .

Proof: The result is contained in the proof of the previous theorem.
Some references cite the diagonal entries as ‖x1‖, ‖x⊥2 ‖, . . . , ‖x⊥n ‖, where x⊥j =
xj − ProjVj−1

(xj), Vj−1 = span{v1, . . . ,vj−1}. Because y1 = x1 and yj =
xj −ProjVj−1

(xj), the formulas for R are identical.

Theorem 23 (Uniqueness of Q and R)
Let m×n matrix A have independent columns and satisfy the decomposition
A = QR. If Q is m × n orthogonal and R is n × n upper triangular with
positive diagonal elements, then Q and R are uniquely determined.
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Proof: The problem is to show that A = Q1R1 = Q2R2 implies R2R
−1
1 = I and

Q1 = Q2. We start withQ1 = Q2R2R
−1
1 . Define P = R2R

−1
1 . ThenQ1 = Q2P .

Because I = QT1 Q1 = PTQT2 Q2P = PTP , then P is orthogonal. Matrix
P is the product of square upper triangular matrices with positive diagonal
elements, which implies P itself is square upper triangular with positive diagonal
elements. The only matrix with these properties is the identity matrix I. Then
R2R

−1
1 = P = I, which implies R1 = R2 and Q1 = Q2. The proof is complete.

Theorem 24 (Orthonormal Diagonal Form)
Let A be a given n× n real matrix. Then A = QDQ−1 with Q orthogonal
and D diagonal if and only if AT = A.

Proof: The reader is reminded that Q orthogonal means that the columns of
Q are orthonormal. The equation A = AT means A is symmetric.

Assume first that A = QDQ−1 with Q = QT orthogonal (QTQ = I) and
D diagonal. Then QT = Q = Q−1. This implies AT = (QDQ−1)T =
(Q−1)TDTQT = QDQ−1 = A.

Conversely, assumeAT = A. Then the eigenvalues ofA are real and eigenvectors
corresponding to distinct eigenvalues are orthogonal. The proof proceeds by
induction on the dimension n of the n× n matrix A.

For n = 1, let Q be the 1 × 1 identity matrix. Then Q is orthogonal and
AQ = QD where D is 1× 1 diagonal.

Assume the decomposition AQ = QD for dimension n. Let’s prove it for A
of dimension n + 1. Choose a real eigenvalue λ of A and eigenvector v1 with
‖v1‖ = 1. Complete a basis v1, . . . , vn+1 of Rn+1. By Gram-Schmidt, we
assume as well that this basis is orthonormal. Define P = aug(v1, . . . ,vn+1).
Then P is orthogonal and satisfies PT = P−1. Define B = P−1AP . Then B is
symmetric (BT = B) and col(B, 1) = λ col(I, 1). These facts imply that B is
a block matrix

B =
(
λ 0
0 C

)
where C is symmetric (CT = C). The induction hypothesis applies to C to
obtain the existence of an orthogonal matrix Q1 such that CQ1 = Q1D1 for
some diagonal matrix D1. Define a diagonal matrix D and matrices W and Q
as follows:

D =
(
λ 0
0 D1

)
,

W =
(

1 0
0 Q1

)
,

Q = PW.

Then Q is the product of two orthogonal matrices, which makes Q orthogonal.
Compute

W−1BW =
(

1 0
0 Q−1

1

)(
λ 0
0 C

)(
1 0
0 Q1

)
=
(
λ 0
0 D1

)
.

Then Q−1AQ = W−1P−1APW = W−1BW = D. This completes the induc-
tion, ending the proof of the theorem.
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Theorem 25 (Eigenpairs of a Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs (λ1,v1),
. . . , (λn,vn), with independent eigenvectors v1, . . . , vn.

Proof: The preceding theorem applies to prove the existence of an orthogonal
matrix Q and a diagonal matrix D such that AQ = QD. The diagonal entries
of D are the eigenvalues of A, in some order. For a diagonal entry λ of D
appearing in row j, the relation A col(Q, j) = λ col(Q, j) holds, which implies
that A has n eigenpairs. The eigenvectors are the columns of Q, which are
orthogonal and hence independent. The proof is complete.

Theorem 26 (Diagonalization of Symmetric A)
Let A be a symmetric n×n real matrix. Then A has n eigenpairs. For each
distinct eigenvalue λ, replace the eigenvectors by orthonormal eigenvectors,
using the Gram-Schmidt process. Let u1, . . . , un be the orthonormal vectors
so obtained and define

Q = aug(u1, . . . ,un), D = diag(λ1, . . . , λn).

Then Q is orthogonal and AQ = QD.

Proof: The preceding theorem justifies the eigenanalysis result. Already, eigen-
pairs corresponding to distinct eigenvalues are orthogonal. Within the set of
eigenpairs with the same eigenvalue λ, the Gram-Schmidt process produces
a replacement basis of orthonormal eigenvectors. Then the union of all the
eigenvectors is orthonormal. The process described here does not disturb the
ordering of eigenpairs, because it only replaces an eigenvector. The proof is
complete.

The Singular Value Decomposition

The decomposition has been used as a data compression algorithm. A
geometric interpretation will be given in the next subsection.

Theorem 27 (Positive Eigenvalues of ATA)
Given an m× n real matrix A, then ATA is a real symmetric matrix whose
eigenpairs (λ,v) satisfy

λ =
‖Av‖2

‖v‖2
≥ 0.(3)

Proof: Symmetry follows from (ATA)T = AT (AT )T = ATA. An eigenpair
(λ,v) satisfies λvTv = vTATAv = (Av)T (Av) = ‖Av‖2, hence (3).

Definition 4 (Singular Values of A)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λr > 0 = λr+1 = · · · = λn. The numbers σk =

√
λk (1 ≤ k ≤ n)

are called the singular values of the matrix A. The ordering of the
singular values is always with decreasing magnitude.
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Theorem 28 (Orthonormal Set u1, . . . , um)
Let the real symmetric matrix ATA have real eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λr > 0 = λr+1 = · · · = λn and corresponding orthonormal eigenvectors
v1,. . . ,vn, obtained by the Gram-Schmidt process. Define the vectors

u1 =
1
σ1
Av1, . . . ,ur =

1
σr
Avr.

Because ‖Avk‖ = σk, then {u1, . . . ,ur} is orthonormal. Gram-Schmidt
can extend this set to an orthonormal basis {u1, . . . ,um} of Rm.

Theorem 29 (The Singular Value Decomposition (svd))
Let A be a given real m × n matrix. Let (λ1,v1),. . . ,(λn,vn) be a set of
orthonormal eigenpairs for ATA such that σk =

√
λk (1 ≤ k ≤ r) defines

the positive singular values of A and λk = 0 for r < k ≤ n. Complete
u1 = (1/σ1)Av1, . . . , ur = (1/σr)Avr to an orthonormal basis {uk}mk=1for
Rm. Define

U = aug(u1, . . . ,um), Σ =

(
diag(σ1, . . . , σr) 0

0 0

)
,

V = aug(v1, . . . ,vn).

Then the columns of U and V are orthonormal and

A = UΣV T

= σ1u1vT1 + · · ·+ σrurvTr
= A(v1)vT1 + · · ·+A(vr)vTr

Proof of Theorem 28: Because ATAvk = λkvk 6= 0 for 1 ≤ k ≤ r, the
vectors uk are nonzero. Given i 6= j, then σiσjui · uj = (Avi)T (Avj) =
λjvTi vj = 0, showing that the vectors uk are orthogonal. Further, ‖uk‖2 =
vk · (ATAvk)/λk = ‖vk‖2 = 1 because {vk}nk=1 is an orthonormal set.
The extension of the uk to an orthonormal basis of Rm is not unique, because
it depends upon a choice of independent spanning vectors yr+1, . . . , ym for the
set {x : x · uk = 0, 1 ≤ k ≤ r}. Once selected, Gram-Schmidt is applied to
u1, . . . , ur, yr+1, . . . , ym to obtain the desired orthonormal basis.

Proof of Theorem 29: The product of U and Σ is the m× n matrix

UΣ = aug(σ1u1, . . . , σrur,0, . . . ,0)
= aug(A(v1), . . . , A(vr),0, . . . ,0).

Let v be any vector in Rn. It will be shown that UΣV Tv,
∑r
k=1A(vk)(vTk v)

and Av are the same column vector. We have the equalities

UΣV Tv = UΣ

 vT1 v
...

vTnv


= aug(A(v1), . . . , A(vr),0, . . . ,0)

 vT1 v
...

vTnv


=

r∑
k=1

(vTk v)A(vk).
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Because v1, . . . , vn is an orthonormal basis of Rn, then v =
∑n
k=1(vTk v)vk.

Additionally, A(vk) = 0 for r < k ≤ n implies

Av = A

(
n∑
k=1

(vTk v)vk

)
=

r∑
k=1

(vTk v)A(vk)

Then Av = UΣV Tv =
∑r
k=1A(vk)(vTk v), which proves the theorem.

Singular Values and Geometry

Discussed here is how to interpret singular values geometrically, espe-
cially in low dimensions 2 and 3. First, we review conics, adopting the
viewpoint of eigenanalysis.

Standard equation of an ellipse. Calculus courses consider ellipse
equations like 85x2−60xy+40y2 = 2500 and discuss removal of the cross
term −60xy. The objective is to obtain a standard ellipse equation
X2

a2
+
Y 2

b2
= 1. We re-visit this old problem from a different point of

view, and in the derivation establish a connection between the ellipse
equation, the symmetric matrix ATA, and the singular values of A.

9 Example (Image of the Unit Circle) Let A =
(
−2 6

6 7

)
.

Then the invertible matrix A maps the unit circle K into the ellipse

85x2 − 60xy + 40y2 = 2500.

Verify that after a rotation to remove the xy-term, in the newXY -coordinates

the equation is
X2

a2
+
Y 2

b2
= 1, where a = 10 and b = 5.

Solution: The Pythagorean identity cos2 θ + sin2 θ = 1 will be used together
with the parameterization θ → (cos θ, sin θ) of the unit circle K, 0 ≤ θ ≤ 2π.

Mapping K by the matrix A is formally the set of dual relations(
x
y

)
= A

(
cos θ
sin θ

)
,

(
cos θ
sin θ

)
= A−1

(
x
y

)
.

The Pythagorean identity used on the second relation implies

85x2 − 60xy + 40y2 = 2500.

This ellipse equation can be represented by the vector-matrix identity(
x y

)( 85 30
30 40

)(
x
y

)
= 2500.
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The symmetric matrix ATA =
(

85 30
30 40

)
has eigenpair packages

P =
1√
5

(
1 2
−2 1

)
, D =

(
25 0
0 100

)
.

In the coordinate system
(
x
y

)
= P

(
X
Y

)
of the orthogonal matrix P , the

ellipse vector-matrix identity becomes

(
X Y

)
PT
(

85 30
30 40

)
P

(
X
Y

)
= 2500.

Because PT
(
ATA

)
P = D = diag(25, 100), then the ellipse equation has the

standard form

25X2 + 100Y 2 = 2500.

The semi-axis lengths for this ellipse are a =
√

2500
25 = 10 and b =

√
2500
100 = 5,

which are precisely the singular values σ1 = 10 and σ2 = 5 of matrix A.

Geometry. The preceding example is typical for all invertible 2 × 2
matrices A. Described here is the geometrical interpretation for the
singular value decomposition A = UΣV T , shown in Figure 4.

Unit circle K
v2

v1

w1

w2

Image A(K)

Figure 4. Mapping the unit circle.
Invertible matrix A maps the unit circle K into the ellipse A(K). Or-
thonormal vectors v1, v2 are mapped by matrix A = UΣV T into or-
thogonal vectors w1 = Av1, w2 = Av2, which are the semi-axes vectors
of the ellipse. The semi-axis lengths ‖w1‖, ‖w2‖ equal the singular val-
ues σ1, σ2.

A summary of the example A =
(
−2 6

6 7

)
:

A 2 × 2 invertible matrix A maps the unit circle K into
an ellipse A(K). Decomposition A = UΣV T means A
maps the columns of V into re-scaled columns of U . These
vectors, σ1u1 and σ2u2, are the semi-axis vectors of the
ellipse A(K), whose lengths σ1, σ2 are the singular values.
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The columns of V are orthonormal vectors v1, v2, computed as eigenpairs

(λ1,v1), (λ2,v2) of ATA. Then Av1 = UΣV Tv1 = U

(
σ1
0

)
= σ1u1.

Similarly, Av2 = UΣV Tv2 = U

(
0
σ2

)
= σ2u2.


