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Studied here are planar autonomous systems of differential equations.
The topics:

Planar Autonomous Systems: Phase Portraits, Stability.

Planar Constant Linear Systems: Classification of isolated equilib-
ria, Phase portraits.

Planar Almost Linear Systems: Phase portraits, Nonlinear classi-
fications of equilibria.

Biological Models: Predator-prey models, Competition models,
Survival of one species, Co-existence, Alligators, doomsday and
extinction.

Mechanical Models: Nonlinear spring-mass system, Soft and hard
springs, Energy conservation, Phase plane and scenes.
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10.1 Planar Autonomous Systems

A set of two scalar differential equations of the form

x′(t) = f(x(t), y(t)),
y′(t) = g(x(t), y(t)).

(1)

is called a planar autonomous system. The term autonomous
means self-governing, justified by the absence of the time variable t
in the functions f(x, y), g(x, y).

To obtain the vector form, let ~u(t) =

(
x(t)
y(t)

)
, ~F (x, y) =

(
f(x, y)
g(x, y)

)
and write (1) as the first order vector-matrix system

d

dt
~u(t) = ~F (~u(t)).(2)

It is assumed that f , g are continuously differentiable in some region D
in the xy-plane. This assumption makes ~F continuously differentiable in
D and guarantees that Picard’s existence-uniqueness theorem for initial
value problems applies to the initial value problem d

dt~u(t) = ~F (~u(t)),
~u(0) = ~u0. Accordingly, to each ~u0 = (x0, y0) in D there corresponds a
unique solution ~u(t) = (x(t), y(t)), represented as a planar curve in the
xy-plane, which passes through ~u0 at t = 0.

Such a planar curve is called a trajectory or orbit of the system and
its parameter interval is some maximal interval of existence T1 < t < T2,
where T1 and T2 might be infinite. A graphic of trajectories drawn as
parametric curves in the xy-plane is called a phase portrait and the
xy-plane in which it is drawn is called the phase plane.

Trajectories Don’t Cross

Autonomy of the planar system plus uniqueness of initial value problems
implies that trajectories (x1(t), y1(t)) and (x2(t), y2(t)) cannot touch or
cross. Hand-drawn phase portraits are accordingly limited: you cannot
draw a solution trajectory that touches another solution curve!

Theorem 1 (Identical Trajectories)
Assume that Picard’s existence-uniqueness theorem applies to initial value
problems in D for the planar system

d

dt
~u(t) = ~F (~u(t)), ~u(t) =

(
x(t)
y(t)

)
.

Let (x1(t), y1(t)) and (x2(t), y2(t)) be two trajectories of the system. If
times t1, t2 exist such that

x1(t1) = x2(t2), y1(t1) = y2(t2),(3)
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then for the value c = t1−t2 the equations x1(t+c) = x2(t) and y1(t+c) =
y2(t) are valid for all allowed values of t. This means that the two trajectories
are on one and the same planar curve, or in the contrapositive, two different
trajectories cannot touch or cross in the phase plane.

Proof: Define x(t) = x1(t+ c), y(t) = y1(t+ c). By the chain rule, (x(t), y(t))
is a solution of the planar system, because x′(t) = x′1(t+c) = f(x1(t+c), y1(t+
c)) = f(x(t), y(t)), and similarly for the second differential equation. Further,
(3) implies x(t2) = x2(t2) and y(t2) = y2(t2), therefore Picard’s uniqueness
theorem implies that x(t) = x2(t) and y(t) = y2(t) for all allowed values of t.
The proof is complete.

Equilibria

A trajectory that reduces to a point, or a constant solution x(t) = x0,
y(t) = y0, is called an equilibrium solution. The equilibrium solutions
or equilibria are found by solving the nonlinear equations

f(x0, y0) = 0, g(x0, y0) = 0.

Each such (x0, y0) in D is a trajectory whose graphic in the phase plane
is a single point, called an equilibrium point. In applied literature,
it may be called a critical point, stationary point or rest point.
Theorem 1 has the following geometrical interpretation.

Assuming uniqueness, no other trajectory (x(t), y(t)) in the
phase plane can touch an equilibrium point (x0, y0).

Equilibria (x0, y0) are often found from linear equations

ax0 + by0 = e, cx0 + dy0 = f,

which are solved by linear algebra methods. They constitute an impor-
tant subclass of algebraic equations which can be solved symbolically. In
this special case, symbolic solutions exist for the equilibria.

It is interesting to report that in a practical sense the equilibria may be
reported incorrectly, due to the limitations of computer software, even
in the case when exact symbolic solutions are available. An example is
x′ = x+ y, y′ = εy− ε for small ε > 0. The root of the problem is trans-
lation of ε to a machine constant, which is zero for small enough ε. The
result is that computer software detects infinitely many equilibria when
in fact there is exactly one equilibrium point. This example suggests
that symbolic computation be used by default.
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Practical Methods for Computing Equilibria

There exists no supporting theory to find equilibria for all choices of
F and G. However, there is a rich library of special methods for solv-
ing nonlinear algebraic equations, including numerical methods based
on celebrated univariate methods, such as Newton’s method and the
bisection method.

Computer algebra systems like maple, maxima and mathematica offer
convenient codes to solve the equations, when possible, including sym-
bolic solutions. Applied mathematics depends on the dynamically ex-
panding library of special methods, which grows due to new mathemat-
ical discoveries. See the exercises for examples.

Population Biology

Planar autonomous systems have been applied to two-species popula-
tions like two species of trout, who compete for food from the same
supply, and foxes and rabbits, who compete in a predator-prey situa-
tion.

Certain equilibria are significant, because they represent the population
sizes for cohabitation. A point in the phase space that is not an equi-
librium point corresponds to population sizes that cannot coexist, they
must change with time. Some equilibria are consequently observable
or average population sizes while non-equilibria correspond to snapshot
population sizes that are subject to flux. Biologists expect population
sizes of such two-species competition models to undergo change until
they reach approximately the observable values, on the average.

Rabbit-Fox System

This example is a predator-prey system, in which the expected observ-
able population sizes are averages, about which the actual populations
size oscillate about, periodically over time. Certain equilibria for these
systems represent ideal cohabitation. Biological experiments suggest
that initial population sizes close to the equilibrium values cause popula-
tions to stay near the initial sizes, even though the populations oscillate
periodically. Observations by field biologists of large population vari-
ations seem to verify that individual populations oscillate periodically
around the ideal cohabitation sizes.

A typical planar system for predator-prey dynamics of x(t) rabbits and
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y(t) foxes is the system

dx

dt
=

1

200
x(40− y),

dy

dt
=

1

100
y(x− 50).

Time variable t is in months. The equilibria are (0, 0), (50, 40). With
initial populations x(0) = 60 rabbits and y(0) = 30 foxes, both x′ and y′

are positive near t = 0, which implies the populations initially increase
in size.

After time, the signs of x′ and y′ are alternately positive and negative,
which reflects the oscillating behavior of the populations about the ideal
equilibrium values x = 50, y = 40. The period of oscillation is about
20 months. This predator-prey model predicts coexistence with average
populations of 50 rabbits and 40 foxes.

Trout System

Consider a population of two species of trout who compete for the same
food supply. A typical autonomous planar system for the species x and
y is

dx

dt
= x(−2x− y + 180),

dy

dt
= y(−x− 2y + 120).

Equilibria. The equilibrium solutions for the trout system are

(0, 0), (90, 0), (0, 60), (80, 20).

Only nonnegative population sizes are physically significant. Units for
the population sizes might be in hundreds or thousands of fish. The equi-
librium (0, 0) corresponds to extinction of both species, while (0, 60)
and (90, 0) correspond to the unusual situation of extinction for one
species. The last equilibrium (80, 20) corresponds to co-existence of
the two trout species with observable population sizes of 80 and 20.

Phase Portraits

A graphic which contains some equilibria and typical trajectories of a
planar autonomous system (1) is called a phase portrait.

While graphing equilibria is not a challenge, graphing typical trajecto-
ries, also called orbits, seems to imply that we are going to solve the
differential system. This is not the case. Approximations will be used
that do not require solution of the differential system.
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Equilibria Plot in the xy-plane all equilibria of (1). See Figure 3.

Window Select an x-range and a y-range for the graph window
which includes all significant equilibria (Figure 3).

Grid Plot a uniform grid of N grid points (N ≈ 50 for hand
work) within the graph window, to populate the graph-
ical white space (Figure 4). The isocline method might
also be used to select grid points.

Field Draw at each grid point a short tangent vector, a re-
placement curve for a solution curve through a grid
point on a small time interval (Figure 5).

Orbits Draw additional threaded trajectories on long time inter-
vals into the remaining white space of the graphic (Figure
6). This is guesswork, based upon tangents to threaded
trajectories matching nearby field tangents drawn in the
previous step. See Figures 1 and 2 for details.

C

y

x
b

a
Figure 1. Badly threaded orbit.

Threaded solution curve C correctly matches its
tangent to the tangent at nearby grid point a,
but it fails to match at grid point b.

Why does a threaded solution curve tangent ~T1 have to match a tangent
~T2 at a nearby grid point (see Figure 2)? A tangent vector is given by
~T = d

dt~u(t) = ~F (~u(t)). Then ~T1 = ~F (~u1), ~T2 = ~F (~u2). However, ~u1 ≈ ~u2
in the graphic, hence by continuity of ~F it follows that ~F (~u1) ≈ ~F (~u2),
which implies ~T1 ≈ ~T2.

u2

C

x

y ~T1

~T2
u1

Figure 2. Tangent matching.

Threaded solution curve C matches its tangent
~~T 1 at ~u1 to direction field tangent

~~T 2 at nearby
grid point ~u2.

It is important to emphasize that solution curves starting at a grid point
are defined for a small t-interval about t = 0, and therefore their graphics
extend on both sides of the grid point. We intend to shorten these
curves until they appear to be straight line segments, graphically atop
the tangent line, to pixel resolution. Adding an arrowhead pointing in
the tangent vector direction is usual. After all this construction, the
shaft of the arrow is graphically atop a short solution curve segment. In
fact, if 50 grid points were used, then 50 short solution curve segments
have already been entered onto the graphic! Threaded orbits are added
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to show what happens to solutions that are plotted on longer and longer
t-intervals.

Phase Portrait Illustration

The method outlined above will be applied to the illustration

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).(4)

The equilibria are (1,−1) and (−1, 1). The graph window is selected as
|x| ≤ 2, |y| ≤ 2, in order to include both equilibria. The uniform grid
will be 11× 11, although for hand work 5× 5 is normal. Tangents at the
grid points are short line segments which do not touch each another –
they are graphically the same as short solution curves.

−2
−2

2
y

2

(1,−1)
x

(−1, 1)

Figure 3. Equilibria (1,−1), (−1, 1)
with Invented Graph Window.

The equilibria (x, y) are calculated from
equations 0 = x + y, 0 = 1 − x2. The
graph window |x| ≤ 2, |y| ≤ 2 is in-
vented initially, then updated until Fig-
ure 5 reveals sufficiently rich field de-
tails.

−2 2

x−2

2
y

Figure 4. Equilibria (1,−1), (−1, 1)
and Invented 11× 11 Uniform Grid.

The equilibria (squares) happen to cover
up two grid points (circles). The invented
size 11 × 11 is to fill the white space in
the graphic.

−1

y

−1 1 x

1

Figure 5. Equilibria, Uniform
Grid and Direction Field.

An arrow shaft at a grid point represents
a solution curve over a small time inter-
val. Threaded solution curves on long
time intervals have tangents matching
nearby arrow shaft directions.
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y

1

−1

−1 1 x

Figure 6. Initial Phase Portrait.
Equilibria (1,−1), (−1, 1) and 11× 11
uniform grid with threaded solution
curves. Arrow shafts included from some
direction field arrows.

Threaded solution curve tangents are to
match nearby direction field arrow shafts.
See Figures 1 and 2 for how to match tan-
gents.

1

−1 1 x

−1

y

Figure 7. Final Phase portrait.

Shown are some threaded solution curves and an 11 × 11 grid. The direction

field has been removed for clarity. Threaded solution curves do not actually

cross, even though graphical resolution might suggest otherwise.

Phase Plot by Computer

Illustrated here is how to make a phase plot like Figure 8 or Figure 9,
infra, with computer algebra system maple, for the system of differential
equations

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).(5)

Before the computer work begins, the differential equation is defined and
the equilibria are computed. Defaults supplied by maple allow an initial
phase portrait to be plotted, from which the graph window is invented.

Phase plot tools can simplify initial plot production. To illustrate, maple
task Phase Portrait has this interface:
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Figure 8. PhasePortrait task in computer algebra system Maple for

equations (5).

Minimal input requires two differential equations, equilibria, a graph
window and time interval for threaded curves. Clicking on the graphic
produces threaded solution curves.

The Phase Portrait Task is unlikely to be able to produce a final, pro-
duction figure. Other tools are normally used afterwards, to make the
final figure.

The initial plot code:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind);

The initial plot suggests which initial conditions near the equilibria
should be selected in order to create typical orbits on the graphic. The
final code with initial data and options:

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)=1-x(t)^2:

wind:=x=-2..2,y=-2..2:Times:=t=-20..20:

opts:=stepsize=0.05,dirgrid=[13,13],

axes=none,thickness=3,arrows=small:

ics:=[[x(0)=-1,y(0)=1.1],[x(0)=-1,y(0)=1.5],

[x(0)=-1,y(0)=.9],[x(0)=-1,y(0)=.6],[x(0)=-1,y(0)=.3],

[x(0)=1,y(0)=-0.9],[x(0)=1,y(0)=-0.6],[x(0)=1,y(0)=-0.6],

[x(0)=1,y(0)=-0.3],[x(0)=1,y(0)=-1.6],[x(0)=1,y(0)=-1.3],

[x(0)=1,y(0)=-1.1]]:

DEtools[DEplot]([des],[x(t),y(t)],Times,wind,ics,opts);
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1−1

1

−1

y

x

Figure 9. Phase
Portrait for (5).

The graphic shows
typical solution curves
and a direction field.
The graphic was
produced in maple

using a 13× 13 grid.

Stability

Consider an autonomous system d
dt~u(t) = ~F (~u(t)) with ~F continuously

differentiable in a region D in the plane.

Stable equilibrium. An equilibrium point ~u0 in D is said to be stable
provided for each ε > 0 there corresponds δ > 0 such that

(a) given ~u(0) in D with ‖~u(0)− ~u0‖ < δ, then the solution ~u(t) exists
on 0 ≤ t <∞ and

(b) ‖~u(t)− ~u0‖ < ε for 0 ≤ t <∞.

Unstable equilibrium. The equilibrium point ~u0 is called unstable
provided it is not stable, meaning at least one of (a) or (b) fails.

Asymptotically stable equilibrium. The equilibrium point ~u0 is said
to be asymptotically stable provided (a) and (b) hold (it is stable),
and additionally

(c) limt→∞ ‖~u(t)− ~u0‖ = 0 for ‖~u(0)− ~u0‖ < δ.

Applied accounts of stability tend to emphasize item (b). Careful appli-
cation of stability theory requires attention to (a), which is the question
of extension of solutions of initial value problems to the half-axis.

Basic extension theory for solutions of autonomous equations says that
(a) will be satisfied provided (b) holds for those values of t for which ~u(t)
is already defined. Stability verifications in mathematical and applied
literature often implicitly use extension theory, in order to present details
compactly. The reader is advised to adopt the same predisposition as
researchers, who assume the reader to be equally clever as they.

Physical stability. In the model d
dt~u(t) = ~F (~u(t)), physical stability

addresses changes in ~F as well as changes in ~u(0). The meaning is
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this: physical parameters of the model, e.g., the mass m > 0, damping
constant c > 0 and Hooke’s constant k > 0 in a damped spring-mass
system

x′ = y,

y′ = − c

m
y − k

m
x,

may undergo small changes without significantly affecting the solution.

In physical stability, stable equilibria correspond to physically ob-
served data whereas other solutions correspond to transient obser-
vations that disappear over time.

A typical instance is the trout system

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

(6)

Physically observed data in the trout system (6) corresponds to the car-
rying capacity, represented by the stable equilibrium point (80, 20),
whereas transient observations are snapshot population sizes that are
subject to change over time. The strange extinction equilibria (90, 0) and
(0, 60) are unstable equilibria, which disagrees with intuition about
zero births for less than two individuals, but agrees with graphical rep-
resentations of the trout system in Figure 10. Changing f for a trout
system adjusts the physical constants which describe the birth and death
rates, whereas changing ~u(0) alters the initial population sizes of the two
trout species.

Figure 10. Phase Portrait for Trout System (6).

Shown are typical solution curves and a direction field. Equilibrium (80, 20) is
asymptotically stable (a square). Equilibria (0, 0), (90, 0), (0, 60) are unstable
(circles).
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Direction Fields by Computer

Direction fields are produced by Maple with its DEplot tool, or with the
graphical task PhasePortrait. Basic code that produces a direction field
can be written with minimal outside support. The ideas discussed below
apply to other programming languages, such as Maxima, Mathematica,

Ruby, Python and Microsoft developer languages.

The Maple code below considers the system

x′ = F1(x, y), y′ = F2(x, y)

with example x′ = F1 = x + y, y′ = F2 = 1 − x2, which was treated
above. Used are Maple libraries plots and plottools.

The plottools function rectangle requires two arguments ul, lr, which
are the upper left (ul) and lower right (lr) vertices of the rectangle.

The plottools function arrow requires five arguments P , Q, sw, aw,
af : the two points P , Q which define the arrow shaft and direction, plus
the shaft width sw, arrowhead width aw and arrowhead length fraction
af (fraction of the shaft length).

The two functions rectangle, arrow plot a polygon from its vertices.
Function rectangle computes four vertices and function arrow com-
putes seven vertices. Function plots[display] plots the vertices.

F1:=(x,y)->evalf(x+y):F2:=(x,y)->evalf(1-x^2): # Define system

a:=-2:b:=2:c:=-2:d:=2:n:=11:m:=11: # Window and Grid

# 2D phase plane direction field with uniform nxm grid.

# Tangent length is 9/10 the grid box width W0.

H:=evalf((b-a)/(n+1)):K:=evalf((d-c)/(m+1)):W0:=min(H,K):

X:=t->a+H*(t):Y:=t->c+K*(t):P:=[]:

for i from 1 to n do

for j from 1 to m do

x:=X(i):y:=Y(j):M1:=F1(x,y): M2:=F2(x,y):

if (M1 =0 and M2 =0) then # no tangent, make a box

h:=W0/5:V:=plottools[rectangle]([x-h,y+h],[x+h,y-h]):

else

h:=evalf(((1/2)*9*W0/10)/sqrt(M1^2+M2^2)):

p1:=x-h*M1:p2:=y-h*M2:q1:=x+h*M1:q2:=y+h*M2:

V:=plottools[arrow]([p1,p2],[q1,q2],0.2*W0,0.5*W0,1/4):

fi:

if (P = []) then P:=V: else P:=P,V: fi:

od:od:

plots[display](P);
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Exercises 10.1

Autonomous Planar Systems.

Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(7)

1. (Vector-Matrix Form) System (7)
can be written in vector-matrix
form

d

dt
~u = ~F (~u(t)).

Display formulas for ~u and ~F .

2. (Picard’s Theorem) Picard’s vec-
tor existence-uniqueness theorem
applies to system (7) with initial
data x(0) = x0, y(0) = y0. Show
the details.

Trajectories Don’t Cross.

3. (Theorem 1 Details) Compute
dy
dt = g(x1(t + c), y1(t + c)), then
show that y′(t) = g(x(t), y(t)) in
the proof of Theorem 1.

4. (Orbits Can Cross) The example

dx

dt
= 1,

dy

dt
= 3y2/3

has infinitely many orbits crossing
at x = y = 0. Exhibit two distinct
orbits which cross at x = y = 0.
Does this example contradict The-
orem 1?

Equilibria. A point (x0, y0) is called
an equilibrium provided x(t) = x0,
y(t) = y0 is a solution of the dynami-
cal system.

5. Justify that (1,−1), (−1, 1) are the
only equilibria for the system x′ =
x+ y, y′ = 1− x2.

6. Display the details which justify
that (0, 0), (90, 0), (0, 60), (80, 20)
are all equilibria for the sys-
tem x′(t) = x(−2x − y + 180),
y′(t) = y(−x− 2y + 120).

Practical Methods for Computing
Equilibria.

7. (Murray System) The biological
system

x′ = x(6−2x−y), y′ = y(4−x−y)

has equilibria (0, 0), (3, 0), (0, 4),
(2, 2). Justify the four answers.

8. (Nullclines) Curves along which
either x′ = 0 or y′ = 0 are called
nullclines. The biological system

x′ = x(6−2x−y), y′ = y(4−x−y)

has nullclines x = 0, y = 0, 6−2x−
y = 0, 4 − x − y = 0. Justify the
four answers.

9. (Nullclines by Computer) Pro-
duce a graphical display of the null-
clines of the Murray System above.
Maple code to produce a nullcline
plot is as follows

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=0..130,y=0..80;

plots[contourplot](eqns,wind,

contours=[0]);

10. (Isoclines by Computer) Level
curves f(x, y) = c are called iso-
clines.

Maple will plot level curves
f(x, y) = −2, f(x, y) = 0,
f(x, y) = 2 using the nullcline
code above, with replacement
contours=[-2,0,2]. Produce
an isocline plot for the Murray
System above with these same
contours.

11. (Implicit Plot) Equilibria can be
found graphically by an implicit
plot. Maple code:

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=0..130,y=0..80;

plots[implicitplot](eqns,wind);

Produce the implicit plot. Is it the
same as the nullcline plot?
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Rabbit-Fox System.

12. (Predator-Prey) Consider a rab-
bit and fox system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Argue why extinction of the rab-
bits (x = 0) implies extinction of
the foxes (y = 0).

13. (Predator-Prey) The rabbit and
fox system

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 40),

has extinction of the foxes (y =
0) implying Malthusian popu-
lation explosion of the rabbits
(limt=∞ x(t) =∞). Explain.

Trout System. Consider

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

14. (Carrying Capacity) Show de-
tails for calculation of the carrying
capacities x = 80, y = 20.

15. (Stability) Equilibrium point x =
80, y = 20 is stable. Explain
this statement using geometry from
Figure 10 and the definition of sta-
bility.

Phase Portraits. Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

16. (Equilibria) Solve for x, y in the
system

0 = x+ y,
0 = 1− x2,

for equilibria (1,−1), (−1, 1).

17. (Graph Window) Explain why
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2 is a
suitable window.

18. (Grid Points) Draw a 5×5 grid on
the graph window |x| ≤ 2, |y| ≤ 2.
Label the equilibria.

19. (Direction Field) Draw direction
field arrows on the 5 × 5 grid of
the previous exercise. They co-
incide with the tangent direction
~v = x′~ı+ y′~ = (x+ y)~ı+ (1−x2)~,
where (x, y) is the grid point. The
arrows may not touch.

20. (Threaded Orbits) On the di-
rection field of the previous exer-
cise, draw orbits (threaded solution
curves), using the rules:

1. Orbits don’t cross.

2. Orbits pass direction field ar-
rows with nearly matching
tangent.

Phase Plot by Computer. Use a
computer algebra system or a numer-
ical workbench to produce phase por-
traits for the given dynamical system.
A graph window should contain all
equilibria.

21. (Rabbit-Fox System I)

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

22. (Rabbit-Fox System II)

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

23. (Trout System I)

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

24. (Trout System II)

x′(t) = x(−2x− y + 200),
y′(t) = y(−x− 2y + 120).
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Stability Inequalities. The signs of
x′(t) and/or y′(t) can predict stabil-
ity or instability. Consider an equi-
librium point (x0, y0) and all solutions
x(t), y(t) satisfying for H small the in-
equalities

|x(0)− x0| ≤ H, |y(0)− y0| ≤ H.

25. (Instability: Repeller) Prove
that x′(t) > 0 and y′(t) > 0 for
all small H > 0 implies instability
at x0, y0.

26. (Stability: Attractor) Prove that
x′(t) < 0 and y′(t) < 0 for all small
H > 0 implies stability at x0, y0.

27. (Instability in x) Prove that
x′(t) > 0 for all small H > 0 im-
plies instability at x0, y0.

28. (Instability in y) Prove that
y′(t) > 0 for all small H > 0 im-
plies instability at x0, y0.

Geometric Stability.

29. (Attractor) Imagine a dust parti-
cle in a fluid draining down a fun-
nel, whose trace is a space curve.
Project the space curve onto the
plane orthogonal to the centerline

of the funnel. Is this planar orbit
stable at centerline position in the
sense of the definition?

30. (Repeller) Imagine a paint
droplet from a paint spray can,
which traces a space curve. Project
the space curve onto the plane
orthogonal to the spray orifice
direction. Is this planar orbit
stable at centerline position in the
sense of the definition?

Algebraic Stability.

31. (Rabbit–Fox Stability) Provide
algebraic details for stability of
equilibrium x = 40, y = 30 for the
system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

32. (Rabbit–Fox Instability) Provide
algebraic details for instability of
equilibrium x = 0, y = 0 for the
system

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).
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10.2 Planar Constant Linear Systems

A constant linear planar system is a set of two scalar differential equa-
tions of the form

x′(t) = ax(t) + by(t)),
y′(t) = cx(t) + dy(t)),

(1)

where a, b, c and d are constants. In matrix form,

d

dt
~u(t) = A~u(t), A =

(
a b
c d

)
, ~u(t) =

(
x(t)
y(t)

)
.

Solutions drawn in phase portraits don’t cross, because of Picard’s theo-
rem. The system is autonomous. The origin is always an equilibrium so-
lution. There can be infinitely many equilibria, found by solving A~u = ~0
for the constant vector ~u, when A is not invertible.

Formula. System (1) can be solved by a formula which parallels the
theorem for second order constant coefficient equations Ay′′ + By′ +
Cy = 0. The reader is invited to learn Putzer’s spectral method, page
753, which is used to derive the formulas. For now, we will accept the
formulas displayed in the next theorem. Putzer’s result depends only on
the Cayley-Hamilton theorem, which says that a matrix A satisfies the
characteristic equation |A− λI| = 0 under substitution λ = A.

Theorem 2 (Planar Constant Linear System: Putzer’s Formula)
Consider the real planar system d

dt~u(t) = A~u(t). Let λ1, λ2 be the roots of
the characteristic equation det(A− λI) = 0. The real general solution ~u(t)
is given by the formula

~u(t) = Φ(t)~u(0)

where the 2× 2 real invertible matrix Φ(t) is defined as follows.

Real λ1 6= λ2 Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 Φ(t) = eλ1t I + teλ1t (A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

Φ(t) = eat
(

cos(bt) I + (A− aI)
sin(bt)

b

)
.

Continuity and Redundancy

The formulas are continuous in the sense that limiting λ1 → λ2 in the first
formula or b→ 0 in the last formula produces the middle formula for real
equal roots. The first formula is also valid for complex conjugate roots
λ1, λ2 = λ1 and it reduces to the third when λ1 = a + ib, therefore the
third formula is technically redundant, but nevertheless useful, because
it contains no complex numbers.
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Recommended: Memorize the first formula, derive the other two.

About the Newton Quotient. The Newton quotient g(x)−g(x0)
x−x0 in

the first formula of the theorem uses g(x) = ext, x = λ2, x0 = λ1,
x − x0 = λ2 − λ1. Calculus defines g′(x0) as the Newton quotient limit
as x→ x0.

Illustrations

Typical cases are represented by the following 2×2 matrices A. The two
roots λ1, λ2 of the characteristic equation must fall into one of the three
possibilities: real distinct, real equal or complex conjugate.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

~u(t) =

(
e5t
(

1 0
0 1

)
+
e2t − e5t

2− 5

(
−6 3
−6 3

))
~u(0).

λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real equal roots.

~u(t) = e3t
(

1− t t
−t 1 + t

)
~u(0).

λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

~u(t) = e2t
(

cos 3t sin 3t
− sin 3t cos 3t

)
~u(0).

Isolated Equilibria

An autonomous system is said to have an isolated equilibrium at ~u =
~u0 provided ~u0 is the only constant solution of the system in |~u−~u0| < r,
for r > 0 sufficiently small.

Theorem 3 (Isolated Equilibrium)
The following are equivalent for a constant planar system d

dt~u(t) = A~u(t):

1. The system has an isolated equilibrium at ~u = ~0.

2. det(A) 6= 0.

3. The roots λ1, λ2 of det(A− λI) = 0 satisfy λ1λ2 6= 0.

Proof: The expansion det(A−λI) = (λ1−λ)(λ2−λ) = λ2− (λ1 +λ2)λ+λ1λ2
shows that det(A) = λ1λ2. Hence 2 ≡ 3. We prove now 1 ≡ 2. If det(A) = 0,
then A~u = ~0 has infinitely many solutions ~u on a line through ~0, therefore
~u = ~0 is not an isolated equilibrium. If det(A) 6= 0, then A~u = ~0 has exactly
one solution ~u = ~0, so the system has an isolated equilibrium at ~u = ~0.
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Classification of Isolated Equilibria

For linear equations
d

dt
~u(t) = A~u(t),

we explain the phase portrait classifications

spiral, center, saddle, node

near the isolated equilibrium point ~u = ~0, and how to detect them when
they occur. Below, λ1, λ2 are the roots of det(A− λI) = 0.

The reader is directed to Figures 13–12 for illustrations of the classifica-
tions. See also duplicate Figures 18–16, which are organized by geometry.

Figure 11. Spiral Figure 12. Center

Figure 13. Saddle

Figure 14. Proper node Figure 15. Improper node
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Spiral λ1 = λ2 = a+ ib complex, a 6= 0, b > 0.

A spiral has solution formula

~u(t) = eat cos(bt)~c1 + eat sin(bt)~c2,

~c1 = ~u(0), ~c2 =
A− aI
b

~u(0).

All solutions are bounded harmonic oscillations of natural
frequency b times an exponential amplitude which grows if
a > 0 and decays if a < 0. An orbit in the phase plane
spirals out if a > 0 and spirals in if a < 0.

Center λ1 = λ2 = a+ ib complex, a = 0, b > 0

A center has solution formula

~u(t) = cos(bt)~c1 + sin(bt)~c2,

~c1 = ~u(0), ~c2 =
1

b
A~u(0).

All solutions are bounded harmonic oscillations of natural
frequency b. Orbits in the phase plane are periodic closed
curves of period 2π/b which encircle the origin.

Saddle λ1, λ2 real, λ1λ2 < 0

A saddle has solution formula

~u(t) = eλ1t~c1 + eλ2t~c2,

~c1 =
A− λ2I
λ1 − λ2

~u(0), ~c2 =
A− λ1I
λ2 − λ1

~u(0).

The phase portrait shows two lines through the origin which
are tangents at t = ±∞ for all orbits.
The line directions are given by the eigenvectors of matrix
A. See Figure 13.

Node λ1, λ2 real, λ1λ2 > 0

The solution formulas are

~u(t) = eλ1t (~a1 + t~a2) , when λ1 = λ2,

~a1 = ~u(0), ~a2 = (A− λ1I)~u(0),

~u(t) = eλ1t~b1 + eλ2t~b2, when λ1 6= λ2,

~b1 =
A− λ2I
λ1 − λ2

~u(0), ~b2 =
A− λ1I
λ2 − λ1

~u(0).
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Proper Node (a.k.a. Star Node). Matrix A is required
to have two eigenpairs (λ1, ~v1), (λ2, ~v2) with λ1 = λ2.
Then ~u(0) in span(~v1, ~v2) implies ~u(0) = c1~v1 + c2~v2
and ~a2 = (A − λ1I)~u(0) = ~0. Therefore, ~u′(t)/|~u′(t)| =
±~u(0)/|~u(0)| implies trajectories are tangent to the line
through (0, 0) in direction ~v = ~u(0)/|~u(0)|. Because ~u(0)
is arbitrary, ~v can be any direction, which explains the star-
like phase portrait in Figure 14

Improper Node with One Eigenpair (a.k.a. Degener-
ate Node). Matrix A is required to have just one eigenpair
(λ1, ~v1) and λ1 = λ2. Then ~u′(t) = (~a2+λ1~a1+tλ1~a2)e

λ1t

implies ~u′(t)/|~u′(t)| ≈ ~a2/|~a2| at |t| =∞. Matrix A−λ1I
has rank 1, hence Image(A − λ1I) = span(~v) for some
nonzero vector ~v. Then ~a2 = (A − λ1I)~u(0) is a multiple
of ~v. Trajectory ~u(t) is tangent to the line through (0, 0)
with direction ~v, as in Figure 15.

Improper Node with Two Distinct Eigenvalues. Dis-
cussed here is the first possibility when matrix A has real
eigenvalues with λ2 < λ1 < 0. The second possibility
λ2 > λ1 > 0 is left to the reader. Then ~u′(t) = λ1~b1e

λ1t+
λ2~b2e

λ2t implies ~u′(t)/|~u′(t)| ≈ ~b1/|~b1| at t =∞. In terms
of eigenpairs (λ1, ~v1), (λ2, ~v2), we compute ~b1 = c1~v1 and
~b2 = c2~v2 where ~u(0) = c1~v1 + c2~v2. Trajectory ~u(t) is
tangent to the line through (0, 0) with direction ~v1. See
Figure 15.

Attractor and Repeller

An equilibrium point is called an attractor provided orbits starting
nearby limit to the point as t→∞. A repeller is an equilibrium point
such that orbits starting nearby limit to the point as t → −∞. Terms
like attracting node and repelling spiral are defined analogously.

Linear Classification Shortcut for d
dt~u = A~u

Presented here is a practical method for deciding the classification of
center, spiral, saddle or node for a linear system d

dt~u = A~u. The method
uses just the eigenvalues of A and the corresponding Euler atoms.

Cayley-Hamilton Basis.

A system d
dt~u = A~u will have general solution

~u = ~d1(Euler Atom 1) + ~d2(Euler Atom 2).

The vectors ~d1, ~d2 depend on A and ~u(0). They are never explicitly used
in the shortcut, hence never computed.
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The two Euler solution atoms are found from roots λ of the characteristic
equation |A− λI| = 0. There are two kinds of atoms:

Sine and cosine appear in the atoms, which make a rotating
phase portrait, which is either a center or a spiral.

No sine or cosine appear in the atoms, making a non-
rotating phase portrait, which is either a node or a saddle.

Table 1. Rotating Phase Portraits

Figure 16. Center Figure 17. Spiral

Table 2. Non-Rotating Phase Portraits

Figure 18. Saddle

Euler solution atoms for a sad-
dle or node have form eat, ebt or
else eat, teat. There are no sine
or cosine terms.

Figure 19. Proper node Figure 20. Improper node

Divide and Conquer. Given 2 × 2 matrix A with |A| 6= 0, find the
roots of the characteristic equation |A − λI| = 0 and construct the two
Euler solution atoms. The classification figure, selected from center,
spiral, node, saddle, depends only on the atoms. Examine the atoms for
sines and cosines. If present, then it will be a rotating figure (center,
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spiral), otherwise it will be a non-rotating figure (node, saddle). One
more divide and conquer decides the figure, because within each figure
group, rotating or non-rotating, there is only one attractor/repeller.

Rotation Test. Suppose sines and cosines appear in the
Euler atoms. If the Euler atoms are pure sine and cosine,
then (0, 0) is a center, otherwise (0, 0) is a spiral.

Non-Rotation Test. Suppose no sines or cosines appear in
the Euler atoms. If at t = ∞ one Euler atom limits to zero
and the other Euler atom limits to infinity, then (0, 0) is a
saddle, otherwise it is a node.

Stability Classification by Euler Atoms.

A center is always stable, characterized by Euler atoms being
pure sine and cosine.

If (0, 0) is not a center, then (0, 0) is stable at t =∞ if and
only if both Euler atoms limit to zero at t =∞.

Divide and conquer via Euler atoms requires no table to decide upon the
basic phase portrait classification: spiral, center, saddle, node. Stability
is likewise decided by Euler atoms.

Node Sub-classifications

If finer geometric sub-classifications of a node are useful to you, then
eigenanalysis is required. Assumed below are λ1, λ2 real and λ1λ2 > 0.
Diagonalizable means there are two eigenpairs (λ1, ~v1), (λ2, ~v2).

Node with Equal Eigenvalues

There are two sub-classifications for a matrix A with real equal eigenval-
ues λ1 = λ2. The directions referenced below are provided by the span
of the eigenvectors, which is either 2-dimensional (all directions possible)
or 1-dimensional (just two directions possible).

Star Node: Matrix A is diagonalizable with λ1 = λ2 6= 0. Equi-
librium (0, 0) is an attractor (or a repeller) from all directions.

Degenerate Node: Matrix A is not diagonalizable and λ1 = λ2 6=
0. Equilibrium (0, 0) is an attractor (or a repeller) from directions
±~v1, where (λ1, ~v1) is the only eigenpair.
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Node with Unequal Eigenvalues

Matrix A two eigenpairs (λ1, ~v1), (λ2, ~v2), because λ1 6= λ2. Equilibrium
(0, 0) is an attractor (or a repeller) from directions ±~v, where ~v is one of
the two eigenvectors.

Proper Node and Improper Node Classifications

The classifications proper and improper organize the possible node
phase portraits according to attractor (or repeller) directions. This ter-
minology may appear in dynamical system literature.

Proper Node: The equilibrium is an attractor (or repeller)
from all directions. The phase portrait is a star node.

Improper Node: The equilibrium is an attractor (or re-
peller) from only two directions. The phase portraits include
everything except the star node, which includes a degener-
ate node and a node with unequal eigenvalues.

How to sort out the terminology? The rule is: proper = star. Every
non-star node is improper.

Examples and Methods

1 Example (Spiral) Show the classification details for the spirals represented
by the matrices (

5 2
−2 5

)
,

(
−1 3
−3 −1

)
.

Solution: Matrix

(
5 2
−2 5

)
has characteristic equation (λ− 5)2 + 4 = 0. Then

λ = 5 ± 2i and the Euler atoms are e5t cos(2t), e5t sin(2t). The atoms have
sines and cosines, which limits the classification to a center or a spiral. The
presence of the exponential factor e5t implies it is not a center, therefore it is
a spiral. Because the atoms limit to zero at t = −∞, then (0, 0) is a repeller.
Classification: unstable spiral.

Matrix

(
−1 3
−3 −1

)
has characteristic equation (λ+1)2+9 = 0. Then λ = −1±3i

and the Euler atoms are e−t cos(3t), e−t sin(3t). The atoms have sines and
cosines, which implies rotation, either a center or a spiral. The presence of the
exponential factor e−t implies it is not a center, therefore it is a spiral. Because
the atoms limit to zero at t = ∞, then (0, 0) is an attractor. Classification:
stable spiral.

2 Example (Center) Matrix

(
0 2
−2 0

)
represents a center. Show the classifi-

cation details.
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Solution: The characteristic equation λ2 + 4 = 0 has complex roots λ = ±2i.
The Euler atoms are cos(2t), sin(2t), therefore a rotating figure is expected.
Because of pure sines and cosines and no exponentials, the initial classification
of spiral or center reduces to a center. Always a center is stable. Classification:
stable center.

3 Example (Saddle) Show the classification details for the saddles repre-

sented by the matrices

(
5 4

10 1

)
,

(
−5 4

2 1

)
.

Solution: We’ll use the theorem |A−λI| = λ2+trace(A)(−λ)+ |A| to find the
characteristic equation. Symbol trace(A) is the sum of the diagonal elements
of A and symbol |A| is the determinant of A, evaluated by Sarrus’s rule.

The characteristic equations are

λ2 − 6λ− 35 = 0, λ2 + 4λ− 13 = 0.

The roots are 3 ± 2
√

11 (9.6,−3.6) and −2 ±
√

17 (2.1,−6.1), respectively.
Therefore, the roots a, b are real with a > 0 and b < 0. Euler atoms are eat, ebt.
The absence of sines and cosines implies the equilibrium (0, 0) is non-rotating,
either a saddle or a node. Because one atom limits to ∞ and the other to zero,
at t = ±∞, then (0, 0) is a saddle. A saddle is always unstable. Classifications:
(0, 0) is an unstable saddle for both matrices.

4 Example (Node Sub-Classification: Equal Eigenvalues) Show the node

classification details for the matrices

(
5 0
0 5

)
,

(
5 1
0 5

)
.

Solution: A 2×2 matrix is called diagonalizable provided it has 2 eigenpairs.

Then

(
5 0
0 5

)
is diagonalizable whereas

(
5 1
0 5

)
is not diagonalizable.

The eigenvalues of both matrices are 5, 5. Euler atoms are the same for both
matrices: e5t, te5t. The absence of sines and cosines limits the classification to
saddle or node. Because these atoms limit to zero at t = −∞, then (0, 0) is a
node. For both, (0, 0) is a repeller.

The repeller directions are provided by the span of the eigenvectors, which is ei-
ther 2-dimensional (all directions possible) or 1-dimensional (just two directions
possible). See page 700.

The repeller directions for

(
5 0
0 5

)
are span

((
1
0

)
,

(
0
1

))
= R2 (all directions).

The repeller directions for

(
5 1
0 5

)
are span

((
1
0

))
, which implies just two unit

directions ±
(

1
0

)
.

Classifications:

(
5 0
0 5

)
is an unstable proper node (star node) and

(
5 1
0 5

)
is

an unstable improper node (degenerate node).
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5 Example (Node Sub-Classification: Unequal Eigenvalues) Show the node

classification details for the matrices

(
−5 0

0 −7

)
,

(
5 0
0 7

)
.

Solution: Both matrices are diagonal, hence each has two independent eigen-
vectors. This example shows that diagonalizability by itself does not decide a
node sub-classification.

Matrix

(
−5 0

0 −7

)
has unequal eigenvalues −5,−7 with Euler atoms e−5t, e−7t.

Absence of sines and cosines limits the classification to saddle or node. The
atoms have limit zero at t = ∞, which eliminates the saddle classification.
Therefore, (0, 0) is an attractor. Classification: stable node.

For

(
−5 0

0 −7

)
, an attractor orbit is tangent at t =∞ to ±~v1, where ~v1 =

(
1
0

)
is a unit eigenvector for λ1 = −5.

Matrix

(
5 0
0 7

)
has unequal eigenvalues 5, 7 with Euler atoms e5t, e7t. Absence

of sines and cosines limits the classification to saddle or node. The atoms have
limit zero at t = −∞, which eliminates the saddle classification. Therefore,
(0, 0) is a repeller. Classification: unstable node.

For

(
5 0
0 7

)
, a repeller orbit is tangent at t = ∞ to ±~v2, where ~v2 =

(
0
1

)
is a

unit eigenvector for λ2 = 7.

Computer Phase Diagrams. In computer node plots for unequal eigenvalues,
an eigenvector direction can be detected from limits at t = ±∞. Attractors will
have the eigenvector direction for eigenvalue λ with |λ| smallest. Repellers will
have the eigenvector direction for eigenvalue λ with |λ| largest.

Exercises 10.2

Planar Constant Linear Systems.

1. (Picard’s Theorem) Explain
why planar solutions don’t cross,
by appeal to Picard’s existence-
uniqueness theorem for d

dt~u=A~u.

2. (Equilibria) System d
dt~u = A~u al-

ways has solution ~u(t) = ~0, so there
is always one equilibrium point.
Give an example of a matrix A
for which there are infinitely many
equilibria.

Putzer’s Formula.

3. (Cayley-Hamilton) Define matri-

ces I =

(
1 0
0 1

)
, 0 =

(
0 0
0 0

)
. Given

matrix A =

(
a b
c d

)
, expand left and

right sides to verify the Cayley-
Hamilton identity
A2−(c+ d)A+ (ad−bc)I = 0.

4. (Complex Roots) Verify the
Putzer solution ~u = Φ(t)~u(0)
of ~u′ = A~u for complex roots
λ1 = λ2 = a + bi, b > 0, where
Φ(t) is

eat
(

cos(bt) I + (A− aI)
sin(bt)

b

)
.

5. (Distinct Eigenvalues) Solve

d

dt
~u =

(
−1 1

0 2

)
~u.

6. (Real Equal Eigenvalues) Solve

d

dt
~u =

(
6 −4
4 −2

)
~u.
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7. (Complex Eigenvalues) Solve

d

dt
~u =

(
2 3
−3 2

)
~u.

Continuity and Redundancy.

8. (Real Equal Eigenvalues) Show
that limiting λ2 → λ1 in the
Putzer formula for distinct eigen-
values gives Putzer’s formula for
real equal eigenvalues.

9. (Complex Eigenvalues) Assume
λ1 = λ2 = a+ ib with b > 0. Then
Putzer’s first formula holds. Show
the third formula details for Φ(t):

eat
(

cos(bt) I + (A− aI)
sin(bt)

b

)
.

Illustrations.

10. (Distinct Eigenvalues) Show the
details for the solution of

d

dt
~u =

(
−1 3
−6 8

)
~u.

11. (Complex Eigenvalues) Show the
details for the solution of

d

dt
~u =

(
2 5
−5 2

)
~u.

Isolated Equilibria.

12. (Determinant Expansion) Verify
that |A− λI| equals

λ2 − (λ1 + λ2)λ+ λ1λ2.

13. (Infinitely Many Equilibria) Ex-
plain why A~u = ~0 has infinitely
many solutions when det(A) = 0.

Classification of Equilibria.

14. (Rotating Figures) When sines
and cosines appear in the Euler
atoms, the phase portrait at (0, 0)
rotates around the origin. Explain
precisely why this is true.

15. (Non-Rotating Figures) When
sines and cosines do not appear in
the Euler atoms, the phase portrait
at (0, 0) has no rotation. Give a
precise explanation.

Attractor and Repeller.

16. (Classification) Which of spiral,
center, saddle, node can be an at-
tractor or a repeller?

17. (Attractor) Prove that (0, 0) is an
attractor if and only if the Euler
atoms have limit zero at t =∞.

18. (Repeller) Prove that (0, 0) is a
repeller if and only if the Euler
atoms have limit zero at t = −∞.

19. (Center) A center is neither an at-
tractor nor a repeller. Explain, us-
ing Euler atoms.

Phase Portrait Linear. Show the
classification details for spiral, cen-
ter, saddle, proper node, improper
node. Include a drawing which identi-
fies eigenvector directions, where such
information applies.

20. (Spiral)

d
dtx = 2x+ 3y,
d
dty = −3x+ 2y.

21. (Center)

d
dtx = 3y,
d
dty = −3x.

22. (Saddle)

d
dtx = 3x,
d
dty = −5y.

23. (Proper Node)

d
dtx = 2x,
d
dty = 2y.

24. (Improper Node: Degenerate)

d
dtx = 2x+ y,
d
dty = 2y.

25. (Improper Node: λ1 6= λ2)

d
dtx = 2x+ y,
d
dty = 3y.
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10.3 Planar Almost Linear Systems

A nonlinear planar autonomous system d
dt~u(t) = ~F (~u(t)) is called almost

linear at equilibrium point ~u = ~u0 if

~F (~u) = A(~u− ~u0) + ~G(~u),

lim
‖~u−~u0‖→0

‖~G(~u)‖
‖~u− ~u0‖

= 0.

The function ~G has the same smoothness as ~F . We investigate the
possibility that a local phase portrait at ~u = ~u0 for the nonlinear system
d
dt~u(t) = ~F (~u(t)) is graphically identical to the one for the linear system
~v′(t) = A~v(t) at ~v = 0.

The results will apply to all isolated equilibria of d
dt~u(t) = ~F (~u(t)).

This is accomplished by expanding F in a Taylor series about each equi-
librium point, which implies that the ideas are applicable to different
choices of A and G, depending upon which equilibrium point ~u0 was
considered.

Define the Jacobian matrix of ~F =

(
f
g

)
at equilibrium point ~u0 by

the formula

J =

(
fx fy
gx gy

)
.

Taylor’s theorem for functions of two variables says that

~F (~u) = J(~u− ~u0) + ~G(~u)

where ~G(~u)/‖~u−~u0‖ → 0 as ‖~u−~u0‖ → 0. Therefore, for ~F continuously
differentiable, we may always take A = J to obtain from the almost linear
system d

dt~u(t) = ~F (~u(t)) its linearization d
dt~v(t) = A~v(t).

Phase Portrait of an Almost Linear System

For planar almost linear systems d
dt~u(t) = ~F (~u(t)), phase portraits have

been studied extensively, by Poincaré-Bendixson and a long list of re-
searchers. It is known that only a finite number of local phase portraits
are possible near each isolated equilibrium point of the nonlinear system,
the library of figures being identical to those possibilities for a linear sys-
tem ~v′(t) = A~v(t). A precise statement, without proof, appears below.

Theorem 4 (Paste Theorem: Almost Linear System Phase Portrait)
Let the planar almost linear system d

dt~u(t) = ~F (~u(t)) be given with ~F (~u) =

A(~u − ~u0) + ~G(~u) near the isolated equilibrium point ~u0 (an isolated root
of ~F (~u0) = ~0 with |A| 6= 0). Let λ1, λ2 be the roots of det(A − λI) = 0.
Then:
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1. If λ1 = λ2, then the equilibrium ~u0 of the nonlinear system d
dt~u(t) =

~F (~u(t)) is either a node or a spiral. The equilibrium ~u0 is an asymp-
totically stable attractor if λ1 < 0 and it is a repeller if λ1 > 0. In
short, the nonlinear system inherits stability from the linear system.

2. If λ1 = λ2 = ib with b > 0, then the equilibrium ~u0 of the nonlinear
system d

dt~u(t) = ~F (~u(t)) is either a center or a spiral. The stability
of the equilibrium ~u0 cannot be predicted from properties of A.

3. In all other cases, the isolated equilibrium ~u0 has graphically the same
local phase portrait as the associated linear system d

dt~v(t) = A~v(t) at

~v = ~0. In particular, local phase portraits of a saddle, spiral or node
can be graphed from the linear system. The nonlinear system inherits
locally the linearized system properties of stability and instability.

Classification of Almost Linear Equilibria

A system d
dt~u(t) = A (~u(t)− ~u0) + ~G(~u(t)) has a local phase portrait

determined by the linear system ~v′(t) = A~v(t), except in the case when
the roots λ1, λ2 of the characteristic equation det(A−λI) = 0 are equal
or purely imaginary (see Theorem 4). To summarize:

Table 3. Equilibria classification for almost linear systems

Eigenvalues of A Nonlinear Classification

λ1 < 0 < λ2 Unstable saddle
λ1 < λ2 < 0 Stable improper node
λ1 > λ2 > 0 Unstable improper node
λ1 = λ2 < 0 Stable node or spiral
λ1 = λ2 > 0 Unstable node or spiral
λ1 = λ2 = a+ ib, a < 0, b > 0 Stable spiral
λ1 = λ2 = a+ ib, a > 0, b > 0 Unstable spiral
λ1 = λ2 = ib, b > 0 Stable or unstable, center or spiral

Almost Linear Equilibria Geometry

Applied literature may refer to an equilibrium point ~u0 of a nonlinear
system d

dt~u(t) = ~F (~u(t)) as a spiral, center, saddle or node. The geome-
try of these classifications is explained below.

Spiral. To describe a nonlinear spiral, we require that an orbit start-
ing on a given ray emanating from the equilibrium point must
intersect that ray in infinitely many distinct points on (−∞,∞).
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Intutition. Basic understanding of a nonlinear spiral is ob-
tained from a linear example, e.g.,

d

dt
~u(t) =

(
−1 2
−2 −1

)
~u(t).

An orbit has component solutions

x(t) = e−t(A cos 2t+B sin 2t), y(t) = e−t(−A sin 2t+B cos 2t)

which oscillate infinity often on (−∞,∞), rotating around equilib-
rium point (0, 0) with amplitude Ce−t, for some constant C > 0.

Center. Local orbits are periodic solutions. Each local orbit is a closed
curve which forms a planar region with boundary, having the equi-
librium point interior. As the periodic orbits shrink, the planar re-
gion also shrinks, limiting as a planar set to the equilibrium point.
Drawings often portray the periodic orbit as a convex figure, but
this is not correct, in general, because the periodic orbit can have
any shape. In particular, the linearized system may have phase
portrait consisting of concentric circles, but the nonlinear phase
portrait has no such exact geometric structure.

Saddle. The term implies that locally the phase portrait looks like a lin-
ear saddle. In nonlinear phase portraits, the straight lines to which
orbits are asymptotic appear to be curves instead. These curves are
called separatrices, which are generally unions of certain orbits
and equilibria.

Node. Each orbit starting near the equilibrium is expected to limit to
the equilibrium at either t = ∞ (stable attractor) or t = −∞
(unstable repeller), in a fashion asymptotic to a direction ~v. The
terminology applies when the linearized system is a proper node
(a.k.a. star node), in which case there is an orbit asymptotic to ~v
for every direction ~v. If there is only one direction ~v possible, or all
orbits are asymptotic to just one separatrix, then the equilibrium
is classified as an improper node. The term degenerate node
applies to a subclass of improper nodes – see Example 4, page 702.

Pasting Figures to make a Nonlinear Phase Portrait

The plan provided by the theorem is to paste a library source figure,
one of spiral, center, saddle or node, overlaying (0, 0) in the source figure
atop equilibrium point ~u = ~u0 in the nonlinear phase portrait. Some
observations follow, about what works and what fails.

1. The local paste is valid to graphical resolution near ~u = ~u0, and
invalid far away from the equilibrium point.
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2. The pasted figure can mutate into a spiral, if the source figure is
either a center, or else a node with λ1 = λ2. Otherwise, saddle,
spiral and node locally paste into saddle, spiral, node.

3. Stability of the source figure is inherited by the nonlinear portrait,
except when the source is a center. In this one exceptional case,
no stability conclusion can be drawn. However, an attractor or
repeller source figure always pastes into an attractor or a repeller.

Examples and Methods

6 Example (Compute Isolated Equilibria) Find all equilibria for the non-
linear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: Equilibria are constant solutions, obtained formally by setting x′ =
y′ = 0 in the two differential equations x′ = x+ y, y′ = 1− x2. Then solve for
constants x, y. The details:

Set x′ = 0 0 = x+ y

Set y′ = 0 0 = 1− x2

Solve for x, y x = ±1, y = −x.

Equilibria (1,−1) and (−1, 1)

7 Example (Linearization at Equilibria) Find the two linearizations at equi-
libria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t).

Solution: The system of differential equations is written with function notation
in the form x′ = f(x, y), y′ = g(x, y). Then

f(x, y) = x+ y, g(x, y) = 1− x2.

The Jacobian matrix

J(x, y) =

(
fx fy
gx gy

)
is computed with symbols x, y, f, g as follows.

Partial derivative fx(x, y): fx = ∂x(x+ y) = 1 + 0 = 1

Partial derivative gx(x, y): gx = ∂x(1− x2) = 0− 2x = −2x

Partial derivative fy(x, y): fy = ∂y(x+ y) = 0 + 1 = 1

Partial derivative gy(x, y): gy = ∂y(1− x2) = 0− 0 = 0
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Then

J(x, y) =

(
fx fy
gx gy

)
=

(
1 1

−2x 0

)
.

The symbols x, y are used for the two substitutions: x = 1, y = −1 and x =
−1, y = 1.

J(1,−1) =

(
1 1
−2 0

)
, J(−1, 1) =

(
1 1
2 0

)
.

The two linearized problems are

d

dt
~u =

(
1 1
−2 0

)
~u,

d

dt
~u =

(
1 1
2 0

)
~u.

8 Example (Classification of Linearized Problems) Classify the two linear
problems

d

dt
~u =

(
1 1
−2 0

)
~u,

d

dt
~u =

(
1 1
2 0

)
~u.

Solution:

The answers:

(
1 1
−2 0

)
is an unstable spiral;

(
1 1
2 0

)
is an unstable saddle.

The two characteristic equations are λ2 − λ + 2 = 0 and λ2 + λ + 2 = 0 with

roots, respectively, 1
2 ± i

√
7
2 and 2,−1. According to the classification theory,

page 696, the equilibrium (0, 0) is respectively an unstable spiral or an unstable
saddle.

9 Example (Pasting Library Linear Portraits onto Nonlinear Portraits)
Classify equilibria (1,−1), (−1, 1) for the nonlinear system

x′(t) = x(t) + y(t), y′(t) = 1− x2(t),

as nonlinear spiral, center, saddle or node. Paste the linear portraits for
J(−1, 1), J(1,−1) onto the nonlinear direction field portrait, when possible.

Solution: Classifications: (−1, 1) is a nonlinear unstable saddle; (1,−1) is a
nonlinear unstable spiral.

Previous examples show that for the linearized problems, (−1, 1) is an unsta-
ble saddle and (−1, 1) is an unstable spiral. Theorem 4 applies to conclude
that the two linear phase portraits directly transfer onto the nonlinear phase
portrait. This means that (0, 0) in each source figure can be pasted atop the
corresponding equilibrium point in the nonlinear system, the pasted figure valid
locally.

Computer phase portraits show the two pasted library figures with automatic
fine tuning. Especially, the saddle will be tuned, because a library source figure
usually has asymptotes parallel to the coordinate axes, whereas the computer
graphic will show tuned asymptotes in eigenvector directions.
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x

y

Figure 21. Pasting Source Figures onto a Nonlinear Phase portrait.
Saddle at (−1, 1), spiral at (1,−1). The saddle source uses a linear phase
portrait for d

dt~v = J(−1, 1)~v. The standard saddle source can be rotated to
match the nonlinear direction field, with a similar result.

10 Example (Trout System) Consider a trout model for two species x, y:

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

The equilibria are (0, 0), (90, 0), (0, 60), (80, 20). Find the linearized problem
for each equilibrium, then make a tuned computer plot.

Solution:
System Form. Let f(x, y) = x(−2x− y + 180), g(x, y) = y(−x− 2y + 120) to
convert to system form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Use symbols f, g, x, y to compute the Jacobian J(x, y) =(
fx fy
gx gy

)
.

fx = ∂
∂x

(
−2x2 − xy + 180x

)
= −4x− y − 180

fy = ∂
∂y

(
−2x2 − xy + 180x

)
= −x

gx = ∂
∂x

(
−xy − 2y2 + 120y

)
= −y

gy = ∂
∂y

(
−xy − 2y2 + 120y

)
= −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria, formally set x′ = y′ = 0. Details:

x′ = 0 = f(x, y) becomes x(−2x− y + 180) = 0

y′ = 0 = g(x, y) becomes y(−x− 2y + 120) = 0

Set the factors to zero, in four possible ways, to obtain the solutions

x = y = 0, x = 0, y = 60, x = 90, y = 0, x = 80, y = 20.
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Linearized Differential Equations. The linear problems d
dt~u = J(x0, y0)~u

at equilibria (0, 0), (0, 60), (90, 0), (80, 20) are created from the four Jacobian
matrices

J(0, 0) =

(
−180 0

0 120

)
, J(0, 60) =

(
120 0
−60 −120

)
,

J(90, 0) =

(
−180 −90

0 30

)
, J(80, 20) =

(
−160 −80
−20 −40

)
.

Eigenvalues. Answers for the four matrices are respectively 120, 180, 120,−120,
30,−180, −27.89,−172.11.

Linear Classifications. Because there are no complex eigenvalues, then the
possible linear phase portraits are either saddle or node. Checking limits of
Euler atoms at t =∞ reveals the classifications unstable node, saddle, saddle,
stable node. No equal eigenvalues implies both nodes are improper.

Paste Theorem. All linear source figures paste directly onto the nonlinear
phase portrait with stability properties inherited. See Theorem 4.

Eigenvectors help understanding of the phase portrait. In all four figures,
asymptote directions are along an eigenvector. For instance, at (80, 20) the

two eigenvector directions are ~v1 =

(
−0.6

1

)
, ~v2 =

(
6.6

1

)
.

y

x

Figure 22. Trout System Phase portrait.
Saddles at (0, 60) and (90, 0). Improper nodes with unequal eigenvalues at (0, 0)
and (80, 20). A separatrix can be visualized, which connects (90, 0) to (0, 0) to
(60, 0) along the coordinate axes, and then to (80, 20).

11 Example (Rabbit-Fox System) Consider a predator-prey model for rab-
bits x(t) and foxes y(t):

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 50).

The equilibria are (0, 0), (50, 40). Find the linearized problem for each equi-
librium, then make a tuned computer plot.
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Solution:
System Form. Let f(x, y) = 1

200x(40 − y), g(x, y) = 1
100y(x − 50) to convert

to system form x′ = f(x, y), y′ = g(x, y).

Jacobian Matrix. Symbols f, g, x, y are used to compute the Jacobian J(x, y) =(
fx fy
gx gy

)
.

fx = ∂
∂x (x/5− xy/200) = 1/5− y/200

fy = ∂
∂y (x/5− xy/200) = −x/200

gx = ∂
∂x (−y/2 + xy/100) = y/100

gy = ∂
∂y (−y/2 + xy/100) = −x− 4y + 120

J(x, y) =

(
fx fy
gx gy

)
=

(
−4x− y − 180 −x

−y −x− 4y + 120

)
Equilibria. To find the equilibria (0, 0), (50, 40), formally set x′ = y′ = 0.
Details:

0 = f(x, y) becomes 1
200x(40− y) = 0

0 = g(x, y) becomes 1
100y(x− 50) = 0

The solutions are x = y = 0 or else x = 50, y = 40.

Linearized Differential Equations. The linear problems d
dt~u = J(x0, y0)~u

at equilibria (0, 0), (50, 40) are created from the two Jacobian matrices

J(0, 0) =

(
1
5 0
0 − 1

2

)
, J(50, 40) =

(
0 − 1

4
2
5 0

)
.

Eigenvalues. The answers are 1
5 ,−

1
2 and ±i/

√
10, respectively.

Linear Classifications. Complex eigenvalues imply linear phase portraits of
either center or node. Checking Euler atoms reveals the classification center at
(50, 40). Real unequal eigenvalues at (0, 0) implies a saddle or node. Checking
limits of the Euler atoms at t =∞ implies (0, 0) is a saddle. Both linear source
figures are stable.

Paste Theorem. The linear saddle source figure for (0, 0) pastes directly onto
the nonlinear phase portrait at (0, 0) with stability properties inherited. The
linear center source figure for (50, 40) pastes into a center or a spiral at (50, 40).
The paste stability or instability is not decided. See Theorem 4.

The easiest path to deciding the nonlinear portrait at (50, 40) is a computer
phase portrait, which shows a center structure.

Eigenvectors help understanding of the phase portrait. At (0, 0) the two eigen-

vector directions are ~v1 =

(
1
0

)
, ~v2 =

(
0
1

)
.
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y

x

Figure 23. Rabbit-Fox System Phase portrait.
Eigenvector directions for the saddle at (0, 0) are parallel to the coordinate axes.
The linear center from J(50, 40) happens to transfer to a nonlinear center at
(50, 40).

Exercises 10.3

Almost Linear Systems. Find all
equilibria (x0, y0) of the given nonlin-
ear system. Then compute the Jaco-
bian matrix A = J(x0, y0) for each
equilibria.

1. (Spiral and Saddle)

d
dtx = x+ 2y,
d
dty = 1− x2.

2. (Saddle and Two Spirals)

d
dtx = x− 3y + 2xy,
d
dty = 4x− 6y − xy − x2.

3. (Spiral, Saddle)

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

4. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

5. (Proper Node and Three Sad-

dles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

6. (Improper Degenerate Node,

Spiral and Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

7. (Improper Node and a Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

8. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Phase Portrait Almost Linear. Lin-
ear library phase portraits can be lo-
cally pasted atop the equilibria of an
almost linear system, with limitations.
Apply the theory for the following ex-
amples. Complete the phase diagram
by computer, thereby resolving the
possible mutation of a center or node
into a spiral. Label eigenvector direc-
tions, where it makes sense.

9. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.
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10. (Proper Node and 3 Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

11. (Improper Degenerate Node,

Spiral and Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

12. (Improper Node and a Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

13. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Classification of Almost Linear
Equilibria. With computer assist, find
and classify the nonlinear equilibria.

14. (Co-existing Species)

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

15. (Doomsday-Extinction)

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

Almost Linear Geometry. A separa-
trix is a union of curves and equilibria
with orbits limiting to it. With com-
puter assist, make a plot of threaded
curves which identify one or more sep-
aratrices near the equilibrium.

16. (Saddle (−1, 1))

d
dtx = x+ y,
d
dty = 1− x2.

17. (Saddle (−1/5,−2/5))

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

18. (Saddle (−2/3, 3
√

4/3))

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

19. (Degenerate Improper Node)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy, at (0, 0).

Rayleigh and van der Pol. Each ex-
ample below has a unique periodic or-
bit surrounding an equilibrium point
that is the limit at t = ∞ of any
other orbit. Verify the spiral repeller
at (0, 0) in the attached figure, from
the linearized problem at (0, 0) and
Paste Theorem 4. Create phase por-
traits with computer assist for the lin-
ear and nonlinear problems.

20. (Lord Rayleigh 1877, Clarinet

Reed Model)

d
dtx = y,

d
dty = −x+ y − y3.

Figure 24. Clarinet Reed.

21. (van der Pol 1924, Radio Oscil-

lator Circuit Model)

d
dtx = y,

d
dty = −x+ (1− x2)y.

Figure 25. Oscillator Circuit.
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10.4 Biological Models

Studied here are predator-prey models and competition models
for two populations. Assumed as background from population biol-
ogy are the one-dimensional Malthusian model d

dtP = kP and the one-

dimensional Verhulst model d
dtP = (a− bP )P .

Predator-Prey Models

One species called the predator feeds on the other species called the
prey. The prey feeds on some constantly available food supply, e.g.,
rabbits eat plants and foxes eat rabbits.

Credited with the classical predator-prey model is the Italian mathe-
matician Vito Volterra (1860-1940), who worked on cyclic variations
in shark and prey-fish populations in the Adriatic sea. The following
biological assumptions apply to model a predator-prey system.

Malthusian Growth The prey population grows according to the
growth equation x′(t) = a x(t), a > 0, in the
absence of predators.

Malthusian Decay The predator population decays according to the
decay equation y′(t) = −b y(t), b > 0, in the
absence of prey.

Chance Encounters The prey decrease population at a rate −pxy,
p > 0, due to chance encounters of predators
y with prey x. Predators increase population
due to these chance interactions at a rate qxy,
q > 0.

The interaction terms qxy and −pxy are justified by arguing that the
frequency of chance encounters is proportional to the product xy. Bi-
ologists explain the proportionality by saying that doubling either pop-
ulation should double the frequency of chance encounters. Adding the
Malthusian rates and the chance encounter rates gives the Volterra
predator-prey system1

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

(1)

The differential equations are displayed in this form in order to emphasize
that each of x(t) and y(t) satisfy a scalar first order differential equa-
tion u′(t) = r(t)u(t) in which the rate function r(t) depends on time.

1The system is written with prey x and predator y. Alphabetical order predator-
prey would have y first and then x.
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For initial population sizes near zero, the two differential equations be-
have very much like the Malthusian growth model u′(t) = a u(t) and the
Malthusian decay model u′(t) = −b u(t). This basic growth/decay prop-
erty allows us to identify the predator variable y, or the prey variable
x, regardless of the order in which the differential equations are written.
As viewed from Malthus’ law u′ = ru, the prey population has growth
rate r = a− py which gets smaller as the number y of predators grows,
resulting in fewer prey. Likewise, the predator population has decay rate
r = −b + qx, which gets larger as the number x of prey grows, causing
increased predation. These are the basic ideas of Verhulst, applied to
the individual populations x and y.

System Variables

The system of two differential equations (1) can be written as a planar
vector autonomous system

d

dt
~u = ~F (~u)

where ~F is defined by

~F (~u) =

(
(a− py)x
(qx− b)y)

)
, ~u =

(
x
y

)
.(2)

The vector function ~F is everywhere defined and continuously differen-
tiable. The Picard–Lindelöf theorem provides existence-uniqueness.

A planar vector autonomous system d
dt~u = ~F (~u) can be written in stan-

dard scalar system form

x′ = f(x, y), y′ = g(x, y)

by providing definitions for f(x, y) and g(x, y). For predator-prey system
(1), the definitions are

f(x, y) = (a− p y)x, g(x, y) = (q x− b)y.

Equilibria

The equilibrium points ~u =

(
x0
y0

)
satisfy ~F (~u) = ~0. For predator-prey

system (1), the equilibria are (0, 0) and (b/q, a/p), found by solving for
x0, y0 in the equations (a− p y0)x0 = 0, (q x0 − b)y0 = 0.
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Linearized Predator-Prey System

The linearized system at equilibrium (x0, y0) is the vector-matrix system
d
dt~v(t) = A~v(t), where A is the Jacobian matrix J(x, y) evaluated at point
x = x0, y = y0, briefly A = J(x0, y0). In terms of system variables2,

J(x0, y0) =

(
fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

)
.

For the predator-prey system, we start by computing

fx =
∂

∂x
(a x− p xy) = a− p y, fy =

∂

∂y
(a x− p xy) = 0− p x,

gx =
∂

∂x
(q xy − b y) = q y − 0, gy =

∂

∂y
(q xy − b y) = q x− b.

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− p y −p x
q y q x− b

)
.(3)

The matrix J is evaluated at equilibrium points (0, 0), (b/q, a/p) to ob-
tain the 2× 2 matrices for the linearized systems:

J(0, 0) =

(
a 0
0 −b

)
, J(b/q, a/p) =

(
0 −bp/q

aq/p 0

)
.

The linearized systems ~v′(t) = A~v(t) are:

Equilibrium (0, 0) d
dt~u(t) =

(
a 0
0 −b

)
~u(t)

Equilibrium (b/q, a/p) d
dt~u(t) =

(
0 −bp/q

aq/p 0

)
~u(t)

Saddle J(0, 0). Matrix

(
a 0
0 −b

)
has unequal real eigenvalues a,−b and

associated Euler atoms eat, e−bt. No rotation implies a saddle or node,
but limits at infinity imply a linear saddle. The Paste Theorem im-
plies system d

dt~u(t) = ~F (~u(t)) has a saddle at equilibrium (0, 0).

Center J(b/q, a/p). Matrix

(
0 −bp/q

aq/p 0

)
has complex conjugate eigen-

values ±i
√
ab and associated Euler atoms cos(t

√
ab), cos(t

√
ab). Pure

rotation (no exponential factor) implies a linear center. The Paste
Theorem implies system d

dt~u(t) = ~F (~u(t)) has either a center or a spi-
ral at equilibrium (b/q, a/p).

Shown below in Theorem 5 is that the spiral case does not happen.
The proof of Lemma 1 is in the exercises.

2Notation fx means ∂f/∂x, the calculus x-derivative with all other variables held
constant.
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Lemma 1 (Predator-Prey Implicit Solution)
Let (x(t), y(t)) be an orbit of the predator-prey system (1) with x(0) > 0

and y(0) > 0. Then for some constant C,

a ln |y(t)|+ b ln |x(t)| − q x(t)− p y(t) = C.(4)

Theorem 5 (Spiral Case Eliminated)

Equilibrium (b/q, a/p) of predator-prey system (1) cannot be a spiral.

Proof: Assume the equilibrium (b/q, a/p) is a spiral point and some orbit
touches the line x = b/q in points (b/q, u1), (b/q, u2) with u1 6= u2, u1 > a/p,
u2 > a/p. Consider the energy function E(u) = a ln |u| − p u. Due to relation
(4), E(u1) = E(u2) = E0, where E0 ≡ C + b − b ln |b/q|. By the Mean Value
Theorem of calculus, dE/du = 0 at some u between u1 and u2. This is a
contradiction, because dE/du = (a−pu)/u is strictly negative for a/p < u <∞.
Therefore, equilibrium (b/q, a/p) is not a spiral.

Rabbits and Foxes

An instance of predator-prey theory is a Volterra population model for
x rabbits and y foxes given by the system of differential equations

x′(t) =
1

250
x(t)(40− y(t)),

y′(t) =
1

50
y(t)(x(t)− 60).

(5)

The equilibria of system (5) are (0, 0) and (60, 40). A phase portrait for
system (5) appears in Figure 26.

The linearized system at (60, 40) is

x′(t) = − 6

25
y(t),

y′(t) =
4

5
x(t).

This system has eigenvalues ±i
√

24/125 and Euler atoms sin(t
√

24/125),
cos(t

√
24/125), which have period 2π/

√
24/125 ≈ 14.33934302. The

linear classification is a center.

The nonlinear classification at (60, 40) is then a center, because of Theo-
rem 5. Intuition dictates that the period of smaller and smaller nonlinear
orbits enclosing the equilibrium (60, 40) must approach a value that is
approximately 14.3.

The fluctuations in population size x(t) are measured graphically by
the maximum and minimum values of x in the phase portrait, or more
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simply, by graphing t versus x(t) in a planar graphic. To illustrate, the
orbit for x(0) = 60, y(0) = 100 is graphed in Figure 27, from which it
is determined that the rabbit population x(t) fluctuates between 39 and
87. Similar remarks apply to foxes y(t).

y

x

0

40

150

11060−10

Figure 26. Rabbit and Fox System (5).

Equilibria (0, 0) and (60, 40) are respectively a saddle and a center. The oscil-
lation period is about 17 for the largest orbit and 14.5 for the smallest orbit.

240
39

87

t

x(t)

Figure 27. Scene Plot of x(t) Rabbits.

An initial rabbit population of 60 and fox population of 100 causes the rabbit
population x(t) to fluctuate from 39 to 87. The plot uses nonlinear equations
(5) with x(0) = 60, y(0) = 100.
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Pesticides, Aphids and Ladybugs

The classical predator-prey equations apply for prey Aphid x(t) and
predator Ladybug y(t), which for simplicity are assumed to be

x′(t) = (1− y(t))x(t),
y′(t) = (x(t)− 1)y(t),

(6)

with units in millions.

Consider employment of an indiscriminate pesticide which kills a certain
percentage of each insect. Typically available pesticide strengths are
s = 0.5, s = 0.75. Strength s = 0 is no pesticide. We will assume
hereafter that 0 ≤ s < 1. The predator-prey equations mutate by adding
terms for pesticide-caused death rates, resulting in the Pesticide Model

x′(t) = (1− y(t))x(t)− s x(t),
y′(t) = (x(t)− 1)y(t)− s y(t).

(7)

Explained below in Figures 28, 29 and 30 are the results in the following
table.

Table 4. Effects of Pesticide on Aphids and Ladybugs

The aphids increase and the ladybugs decrease.

The insecticide had a counterproductive effect. Aphid damage to the
garden plants increased by using a pesticide.

y

1.6

0
0

s = 0

s = 0.5

0.7

3
x

Figure 28. Aphid-Ladybug Portraits s = 0, s = 0.5.

Aphid population max and min are measured by the orbit width. Ladybug
population max and min are measured by the orbit height. Both orbits use
x(0) = y(0) = 0.7. Details appear in the x and y scene plots, infra.
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Pesticide model (7) is equivalent to the classical predator-prey system
(1) with replacements a = 1− s, b = 1 + s. The nonlinear phase portrait
for the pesticide model has according to predator-prey theory a saddle
at (0, 0) and a center at (1 + s, 1− s).

The scene plots in Figures 29 and 30 show that the aphids increase
and the ladybugs decrease, for the two populations, x(t) aphids, y(t)
ladybugs in pesticide system (7), with pesticide strengths s = 0 and
s = 0.5 and initial populations x(0) = 0.7, y(0) = 0.7 (in millions).

y

10 20
x0

1.5

2.8

s = 0

s = 0.5

0

Figure 29. Aphid Scene x(t).

Aphids increase when pesticide strength s = 0.5 is applied.

y

0.7

1.5

x

s = 0

s = 0.5

0
0 10 20

Figure 30. Ladybug Scene y(t).

Ladybugs decrease when pesticide strength s = 0.5 is applied.
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Competition Models

Two populations 1 and 2 feed on some constantly available food supply,
e.g., two kinds of insects feed on fallen fruit. The following biological
assumptions apply to model a two-population competition system.

Verhulst model 1 Population 1 grows or decays according to the
logistic equation x′(t) = (a− bx(t))x(t), in the
absence of population 2.

Verhulst model 2 Population 2 grows or decays according to the
logistic equation y′(t) = (c− dy(t))y(t), in the
absence of population 1.

Chance encounters Population 1 decays at a rate −pxy, p > 0, due
to chance encounters with population 2. Popu-
lation 2 decays at a rate −qxy, q > 0, due to
chance encounters with population 1.

Adding the Verhulst rates and the chance encounter rates gives the
Volterra competition system

x′(t) = (a− bx(t)− py(t))x(t),
y′(t) = (c− dy(t)− qx(t))y(t).

(8)

The equations show that each population satisfies a time-varying first
order differential equation u′(t) = r(t)u(t) in which the rate function
r(t) depends on time. For initial population sizes near zero, the two
differential equations essentially reduce to the Malthusian growth models
x′(t) = ax(t) and y′(t) = cy(t). As viewed from Malthus’ law u′ = ru,
population 1 has growth rate r = a−bx−py which decreases if population
2 grows, resulting in a reduction of population 1. Likewise, population 2
has growth rate r = c−dy−qx, which reduces population 2 as population
1 grows. While a, c are Malthusian growth rates, constants b, d measure
inhibition (due to lack of food or space) and constants p, q measure
competition.

Equilibria

The equilibrium points ~u satisfy ~F (~u) = ~0 where ~F is defined by

~F (~u) =

(
(a− bx− py)x
(c− dy − qx)y

)
, ~u =

(
x
y

)
.(9)

To isolate the most important applications, the assumption will be made
of exactly four roots in population quadrant I. This is equivalent to the
condition bd− qp 6= 0 plus all equilibria have nonnegative coordinates.
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Three of the four equilibria are found to be (0, 0), (a/b, 0), (0, c/d). The
last two represent the carrying capacities of the Verhulst models in the
absence of the second population. The fourth equilibrium (x0, y0) is

found as the unique root

(
x0
y0

)
of the linear system

(
b p
q d

)(
x0
y0

)
=

(
a
c

)
,

which according to Cramer’s rule is

x0 =
ad− pc
bd− qp

, y0 =
bc− qa
bd− qp

.

Linearized Competition System

The Jacobian matrix J(x, y) is computed from the partial derivatives of
system variables f, g, which are found as follows.

f(x, y) = (a− b x− p y)x, = a x− b x2 − p xy
g(x, y) = (c− d y − q x) y = c y − d y2 − q xy
fx = ∂

∂x(a x− b x2 − p xy) = a− 2b x− p y
fy = ∂

∂y (a x− b x2 − p xy) = −p x
gx = ∂

∂x(c y − d y2 − q xy) = −q y
gy = ∂

∂y (c y − d y2 − q xy) = c− 2d y − q x

The Jacobian matrix is given explicitly by

J(x, y) =

(
fx fy
gx gy

)
=

(
a− 2bx− py −px
−qy c− 2dy − qx

)
.(10)

The matrix J is evaluated at an equilibrium point (a root of ~F (~u) = ~0)
to obtain a 2×2 matrix A for the linearized system d

dt~v(t) = A~v(t). The
four linearized systems are:

Equilibrium (0, 0)
Nodal Repeller

d
dt~u(t) =

(
a 0
0 c

)
~u(t)

Equilibrium (a/b, 0)
Saddle or Nodal Attractor

d
dt~u(t) =

(
−a −ap/b
0 c− qa/b

)
~u(t)

Equilibrium (0, c/d)
Saddle or Nodal Attractor

d
dt~u(t) =

(
a− cp/d 0
−qc/d −c

)
~u(t)

Equilibrium (x0, y0)
Saddle or Nodal Attractor

d
dt~u(t) =

(
−bx0 −px0
−qy0 −dy0

)
~u(t)
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Equilibria (a/b, 0) and (0, c/d) are either both saddles or both nodal
atractors, accordingly as bd − qp > 0 or bd − qp < 0, because of the
requirement that a, b, c, d, p, q, x0, y0 be positive.

The analysis of equilibrium (x0, y0) is made by computing the eigenvalues
λ of the linearized system, from characteristic equation λ2+(bx0+dy0)λ+
(bd− pq)x0y0 = 0, giving

λ =
1

2

(
−(bx0 + dy0)±

√
D
)
, where D = (bx0 − dy0)2 + 4pqx0y0.

Because D > 0, the equilibrium is a saddle when the roots have opposite
sign, and it is a nodal attractor when both roots are negative. The
saddle case is D > (bx0 +dy0)

2 or equivalently 4x0y0(pq−bd) > 0, which
reduces to bd− qp < 0. In summary:

If bd− qp > 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are
respectively a saddle, saddle, nodal attractor.

If bd− qp < 0, then equilibria (a/b, 0), (0, c/d), (x0, y0) are
respectively a nodal attractor, nodal attractor, saddle.

Biological Meaning of bd− qp Negative or Positive

The quantities bd and qp are measures of inhibition and competition.

Survival-Extinction The inequality bd− qp < 0 means that competi-
tion qp is large compared with inhibition bd. The
equilibrium point (x0, y0) is unstable in this case,
which biologically means that the two species
cannot coexist: survival for one species and ex-
tinction for the other species.

Co-existence The inequality bd − qp > 0 means that compe-
tition qp is small compared with inhibition bd.
The equilibrium point (x0, y0) is asymptotically
stable in this case, which biologically means the
two species co-exist.

Survival of One Species

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

(11)

We apply the general competition theory with a = 24, b = 1, p = 2,
c = 30, d = 1, q = 2. The equilibrium points are (0, 0), (0, 30), (24, 0),
(12, 6), shown in Figure 31 as solid circles and squares. Eigenvalues are
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computed from Jacobian matrix J(x, y) =

(
24− 2x− 2y −2x
−2y 30− 2y − 2x

)
evaluated at the four equilibria. The answers:

Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = −36,−30, nodal attractor.

Equilibrium (24, 0): λ = −24,−18, nodal attractor.

Equilibrium (12, 6): λ = 8.23,−26.23, saddle.

The Paste Theorem says that the linear portraits can be pasted atop
the four equilibria in the nonlinear phase portrait. The tuned portrait
appears in Figure 31, clipped to the population quadrant x ≥ 0, y ≥ 0.

0

30

24120

6

y

x

Figure 31. Survival of One Species.

Portrait for system (11). Equilibria are (0, 0), (0, 30), (24, 0) and (12, 6), classi-
fied respectively as nodal repeller, nodal attractor, nodal attractor and saddle.
The population with initial advantage survives, while the other dies out.

Co-existence

Consider populations x(t) and y(t) that satisfy the competition model

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

(12)

We apply the general competition theory with a = 24, b = 2, p = 1,
c = 30, d = 2, q = 1. The equilibrium points are (0, 0), (0, 15), (12, 0) and
(6, 12), shown in Figure 32 as solid circles and squares. Eigenvalues are

computed from Jacobian matrix J(x, y) =

(
24− 4x− y −x
−y 30− 4y − x

)
evaluated at the four equilibria. The answers:
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Equilibrium (0, 0): λ = 24, 30, nodal repeller.

Equilibrium (0, 30): λ = 18,−24, saddle.

Equilibrium (24, 0): λ = 9,−30, saddle.

Equilibrium (12, 6): λ = −7.61,−28.39, nodal attractor.

The linear portraits can be pasted atop the four equilibria in the nonlin-
ear phase portrait, according to the Paste Theorem. Figure 32 is the
tuned portrait.

y

x
60 12

0

12

15

Figure 32. Coexistence.

Phase portrait of system (12). The equilibria are (0, 0), (0, 15), (12, 0) and
(6, 12), classified respectively as nodal repeller, saddle, saddle, nodal attractor.
A solution with x(0) > 0, y(0) > 0 limits at t = ∞ to the solid square (6, 12).
Coexistence states are x = 6, y = 12.

Alligators, Explosion and Extinction

Let us assume a competition-type model (8) in which the Verhulst dy-
namics has explosion-extinction type. Thus, we take the signs of a, b,
c, d in (8) to be negative, but p, q are still positive. The populations
x(t) and y(t) are unsophisticated in the sense that each population in
the absence of the other is subject to only the possibilities of population
explosion or population extinction.

It can be verified for this general setting, although we shall not attempt
to do so here, that the population quadrant x(0) > 0, y(0) > 0 is sepa-
rated into two regions I and II, whose common boundary is a separatrix
consisting of three equilibria and two orbits. An orbit starting in region
I will have (a) x(∞) = 0, y(∞) = ∞, or (b) x(∞) = ∞, y(∞) = 0, or
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(c) x(∞) = ∞, y(∞) = ∞. Orbits starting in region II will satisfy (d)
x(∞) = 0, y(∞) = 0. The biological conclusion is that either population
explosion or extinction occurs for each population.

Consider the instance

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

(13)

We will apply the general competition theory with a = 24, b = 2, p =
1, c = 30, d = 2, q = 1. The equilibria are (0, 0), (0, 8), (4, 0) and
(6, 2), shown in Figure 33 as solid circles and a square. Eigenvalues λ

are computed from Jacobian matrix J(x, y) =

(
2x− y − 4 −x
−y x+ 2y − 8

)
evaluated at the four equilibria. The answers:

Equilibrium (0, 0): λ = −4,−8, nodal attractor.

Equilibrium (0, 30): λ = 8,−12, saddle.

Equilibrium (24, 0): λ = 4,−4, saddle.

Equilibrium (12, 6): λ = 4± 2.83 i, spiral repeller.

The Paste Theorem predicts the tuned portrait in Figure 33.

0 4 6

2

0

8

y

x

Figure 33. Population Explosion or Extinction.

Phase portrait of system (13). The equilibria are (0, 0), (0, 8), (4, 0) and (6, 2),
classified respectively as nodal attractor, saddle, saddle and spiral repeller. The
node and two saddles are marked with a solid disk and the spiral repeller is
marked with a solid square.
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Exercises 10.4

Predator-Prey Models.

Consider the system

x′(t) =
1

250
(1− 2y(t))x(t),

y′(t) =
3

500
(2x(t)− 1)y(t).

1. (System Variables) The system
has vector-matrix form

d

dt
~u = ~F (~u(t)).

Display formulas for ~u and ~F .

2. (System Parameters) Identify the
values of a, b, c, d, p, q, as used in
the textbook’s predator-prey sys-
tem.

3. (Identify Predator and Prey)

Which of x(t), y(t) is the predator?

4. (Switching Predator and Prey)

Give an example of a predator-prey
system in which x(t) is the preda-
tor and y(t) is the prey.

Implicit Solution Predator-Prey.
These exercises prove the equation

a ln |y|+ b ln |x| − q x− p y = C.

5. (First Order Equation) Verify
from the chain rule of calculus the
first order equation

dy

dx
=
y′(t)

x′(t)
=
y

x

qx− b
a− py

.

6. (Separated Variables) Verify(
a

y
− p
)
dy =

(
q − b

x

)
dx.

7. (Quadrature) Integrate the equa-
tion of the previous exercise to ob-
tain

a ln |y| − p y = q x− b ln |x| = C.

Then re-arrange to obtain the re-
ported implicit solution.

8. (Energy Function) Define E(t) =
a ln |u| − pu. Show that dE/du =
(a − pu)/u. Then show that
dE/du < 0 for a > 0, p > 0 and
a/p < u <∞.

Linearized Predator-Prey System.
Consider

x′(t) = (100− 2y(t))x(t),
y′(t) = (2x(t)− 160)y(t).

9. (Find Equilibria) Verify equilibria
(0, 0), (80, 50).

10. (Jacobian Matrix) Compute
J(x, y) for each x, y. Then find
J(0, 0) and J(80, 50).

11. (Transit Time) Find the trip time
of an orbit about (0, 0) for sys-

tem d
dt~v =

(
0 −160

100 0

)
~v , the lin-

earization about (80, 50).

12. (Paste Theorem) Describe the lo-
cal figures expected near equilibria
in the nonlinear phase portrait.

Rabbits and Foxes. Consider

x′(t) =
1

200
x(t)(50− y(t)),

y′(t) =
1

100
y(t)(x(t)− 40).

13. (Equilibria) Verify equilibria
(0, 0), (40, 50), showing all details.

14. (Jacobian) Compute Jacobian
J(x, y), then J(0, 0) and J(40, 50).

15. (Rabbit Oscillation) The linear
and nonlinear scenes for x(t) must
approximate each other. Find esti-
mates for the max and min of rab-
bits and their period of oscillation,
for the nonlinear system.

Pesticides. Consider the system

x′(t) = (10− y(t))x(t)− s1x(t),
y′(t) = (x(t)− 20)y(t)− s2y(t).
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16. (Equilibria) Show details for com-
puting the pesticide system equilib-
ria (0, 0), (20 + s2, 10 − s1), where
s1, s2 are the pesticide death rates.

17. (Average Populations) Explain:
A field biologist should count, on
the average, populations of about
20 + s2 prey and 10− s1 predators.

Survival of One Species. Consider

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

18. (Interactions) Show that dou-
bling either x or y causes the in-
teraction term 2xy to double.

19. (Equilibria) Find all equilibria.

20. (Linearization) Find the lin-
earized systems d

dt~v = J(x0, y0)~v
for each equilibrium point (x0, y0).

21. (Nonlinear Classification) Clas-
sify each equilibrium point (x0, y0)
as center, spiral, node, saddle, us-
ing the Paste Theorem. Make a
phase portrait which confirms the
classifications.

Co-existence.

Explosion and Extinction.
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10.5 Mechanical Models

Nonlinear Spring-Mass System

The classical linear undamped spring-mass system is modeled by the
equation mx′′(t) + kx(t) = 0. This equation describes the excursion x(t)
from equilibrium x = 0 of a mass m attached to a spring of Hooke’s
constant k, with no damping and no external forces.

In the nonlinear theory, the Hooke’s force term −kx is replaced by a
restoring force F (x) which satisfies these four requirements:

Equilibrium 0. The equation F (0) = 0 is assumed, which gives x = 0
the status of a rest position.

Oddness. The equation F (−x) = −F (x) is assumed, which says that
the force F depends only upon the magnitude of the excursion
from equilibrium, and not upon its direction. Then force F acts to
restore the mass to its equilibrium position, like a Hooke’s force
x→ kx.

Zero damping. The damping effects always present in a real physical
system are ignored. In linear approximations, it would be usual to
assume a viscous damping effect −cx′(t); from this viewpoint we
assume c = 0.

Zero external force. There is no external force acting on the system.
In short, only two forces act on the mass, (1) Newton’s second law
and (2) restoring force F .

The competition method applies to model the nonlinear spring-mass sys-
tem via the two competing forces mx′′(t) and F (x(t)). The dynamical
equation:

mx′′(t) + F (x(t)) = 0.(1)

Soft and Hard Springs

A restoring force F modeled upon Hooke’s law is given by the equation
F (x) = kx. With this force, the nonlinear spring-mass equation (1)
becomes the undamped linear spring-mass system

mx′′(t) + kx(t) = 0.(2)

The linear equation can be thought to originate by replacing the actual
spring force F by the first nonzero term of its Taylor series

F (x) = F (0) + F ′(0)x+ F ′′(0)
x2

2!
+ · · · .
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The assumptions F (−x) = −F (x) and F (0) = 0 imply that F (x) is a
function of the form F (x) = xG(x2), hence all even terms in the Taylor
series of F are zero.

Linear approximations to the force F drop the quadratic terms and
higher from the Taylor series. More accurate nonlinear approximations
are obtained by retaining extra Taylor series terms.

A restoring force F is called hard or soft provided it is given by a
truncated Taylor series as follows.

Hard spring F (x) = kx+ βx3, β > 0.

Soft spring F (x) = kx− βx3, β > 0.

For small excursions from equilibrium x = 0, a hard or soft spring
force has magnitude approximately the same as the linear Hooke’s force
F (x) = kx.

Energy Conservation. Each solution x(t) of the nonlinear spring-
mass equation mx′′(t) + F (x(t)) = 0 satisfies on its domain of existence
the conservation law

m

2
(x′(t))2 +

∫ x(t)

x(0)
F (u) du = C, C ≡ m

2
(x′(0))2.(3)

To prove the law, multiply the nonlinear differential equation by x′(t) to
obtain mx′′(t)x′(t) + F (x(t))x′(t) = 0, then apply quadrature to obtain
(3).

Kinetic and Potential Energy. Using v = x′(t), the term mv2/2
in (3) is called the kinetic energy (KE) and the term

∫ x
x0
F (u)du is

called the potential energy (PE). Equation (3) says that KE+PE =
C or that energy is constant along trajectories.

The conservation laws for the soft and hard nonlinear spring-mass sys-
tems, using position-velocity notation x = x(t) and y = x′(t), are there-
fore given by the equations

my2 + kx2 +
1

2
βx4 = C1, C1 = constant > 0,(4)

my2 + kx2 − 1

2
βx4 = C2, C2 = constant.(5)

Phase Plane and Scenes. Nonlinear behavior is commonly graphed
in the phase plane, in which x = x(t) and y = x′(t) are the position and
velocity of the mechanical system. The plots of t versus x(t) or x′(t) are
called scenes; these plots are invaluable for verifying periodic behavior
and stability properties.
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Hard spring

The only equilibrium for a hard spring x′ = y, my′ = −kx − βx3 is
the origin x = y = 0. Conservation law (4) describes a closed curve in
the phase plane, which implies that trajectories are periodic orbits that
encircle the equilibrium point (0, 0). The classification of center applies.
See Figures 34 and 35.
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Figure 34. Hard spring
x′′(t) + x(t) + 2x3(t) = 0.
Phase portrait for x′ = y,
y′ = −2x3 − x on |x| ≤ 2, |y| ≤ 3.5.
Initial data: x(0) = 0 and y(0) = 1/2,
1, 2, 3.
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Figure 35. Hard spring
x′′(t) + x(t) + 2x3(t) = 0.
Coordinate scenes for x′ = y,
y′ = −2x3 − x, x(0) = 0, y(0) = 1.

More intuition about the orbits can be obtained by finding the energy
C1 for each orbit. The value of C1 decreases to zero as orbits close
down upon the origin. Otherwise stated, the xyz-plot with z = C1 has
a minimum at the origin, which physically means that the equilibrium
state x = y = 0 minimizes the energy. See Figure 36.

(0, 0, 0)

Figure 36. Hard spring energy
minimization.
Plot for x′′(t) + x(t) + 2x3(t) = 0,
using z = y2 + x2 + x4 on |x| ≤ 1/2,
|y| ≤ 1. The minimum is realized at
x = y = 0.

Soft Spring

There are three equilibria for a soft spring

x′ = y,
my′ = −kx+ βx3.

They are (−α, 0), (0, 0), (α, 0), where α =
√
k/β. If (x(0), y(0)) is given

not at these points, then the mass undergoes motion. In short, the
stationary mass positions are at the equilibria.
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Linearization at the equilibria reveals part of the phase portrait. The
linearized system at the origin is the system x′ = y, my′ = −kx, equiv-
alent to the equation mx′′ + kx = 0. It has a center at the origin. This
implies the origin for the soft spring is either a center or a spiral. The
other two equilibria have linearized systems equivalent to the equation
mx′′ − 2kx = 0; they are saddles.

The phase plot in Figure 37 shows separatrices, which are unions of
solution curves and equilibrium points. Orbits in the phase plane, on
either side of a separatrix, have physically different behavior. Shown is
a center behavior interior to the union of the separatrices, while outside
all orbits are unbounded.

y

x

Figure 37. Soft spring
x′′(t) + x(t)− 2x3(t) = 0.
A phase portrait for x′ = y,
y′ = 2x3 − x on |x| ≤ 1.2, |y| ≤ 1.2.
The 8 separatrices are the 6 bold
curves plus the two equilibria
(
√

0.5, 0), (−
√

0.5, 0).

−2

−1.5 1.5
position x

velocity y

t

3

Figure 38. Soft spring
x′′(t) + x(t)− 2x3(t) = 0.
Coordinate scenes for x′ = y,
y′ = 2x3 − x, x(0) = 0, y(0) = 4.

Nonlinear Pendulum

Consider a nonlinear undamped pendulum of length L making angle θ(t)
with the gravity vector. The nonlinear pendulum equation is given
by

d2θ(t)

dt2
+
g

L
sin(θ(t)) = 0(6)

and its linearization at θ = 0, called the linearized pendulum equa-
tion, is

d2θ(t)

dt2
+
g

L
θ(t) = 0.(7)

The linearized equation is valid only for small values of θ(t), because of
the assumption sin θ ≈ θ used to obtain (7) from (6).

Damped Pendulum

Physical pendulums are subject to friction forces, which we shall as-
sume proportional to the velocity of the pendulum. The corresponding
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model which includes frictional forces is called the damped pendulum
equation:

d2θ(t)

dt2
+ c

dθ

dt
+
g

L
sin(θ(t)) = 0.(8)

It can be written as a first order system by setting x(t) = θ(t) and
y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g
L

sin(x(t))− cy(t).
(9)

Undamped Pendulum

The position-velocity differential equations for the undamped pendulum
are obtained by setting x(t) = θ(t) and y(t) = θ′(t):

x′(t) = y(t),

y′(t) = − g
L

sin(x(t)).
(10)

Equilibrium points of nonlinear system (10) are at y = 0, x = nπ, n =
0,±1,±2, . . . with corresponding linearized system (see the exercises)

x′(t) = y(t),

y′(t) = − g
L

cos(nπ)x(t).
(11)

The characteristic equation of linear system (11) is r2 − g/L(−1)n = 0,
because cos(nπ) = (−1)n. The roots have different character depending
on whether or not n is odd or even.

Even n = 2m. Then r2 + g/L = 0 and the linearized system (11) is a
center. The orbits of (11) are concentric circles surrounding x = nπ,
y = 0.

Figure 39. Linearized pendulum
at x = 2mπ, y = 0.
Orbits are concentric circles.

Odd n = 2m+ 1. Then r2 − g/L = 0 and the linearized system (11) is
a saddle. The orbits of (11) are hyperbolas with center x = nπ, y = 0.
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Figure 40. Linearized pendulum
at x = (2m+ 1)π, y = 0.
Orbits are hyperbolas.

Drawing the Nonlinear Phase Diagram. The idea of the plot is to
copy the linearized diagram onto the local region centered at the equi-
librium point, when possible. The copying is guaranteed to be correct
for the saddle case, but a center must be copied either as a spiral or a
center. We must do extra analysis to determine the figure to copy in the
case of the center.

The orbits trace an xy-curve given by integrating the separable equation

dy

dx
=
−g
L

sinx

y
.

Then the conservation law for the mechanical system is

1

2
y2 +

g

L
(1− cosx) = E

where E is a constant of integration. This equation is arranged so that
E is the sum of the kinetic energy y2/2 and the potential energy g(1 −
cosx)/L, therefore E is the total mechanical energy. Using the double
angle identity cos 2φ = 1 − 2 sin2 φ the conservation law can be written
in the shorter form

y2 +
4g

L
sin2(x/2) = 2E

When the energy E is small, E < 2g/L, then the pendulum never reaches
the vertical position and it undergoes sustained periodic oscillation: the
stable equilibria (0, 2kπ) have a local center structure.

When the energy E is large, E > 2g/L, then the pendulum reaches
the vertical position and goes over the top repeatedly, represented by a
saddle structure. The statement is verified from the two explicit solutions

y = ±
√

2E − 4g sin2(x/2)/L.

The energy equation E = 2g/L produces the separatrices, which consist
of equilibrium points plus solution curves which limit to the equilibria
as t→ ±∞.
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Figure 41. Nonlinear pendulum
phase diagram.
Centers at (−2π, 0), (0, 0), (2π, 0).
Saddles at (−3π, 0), (−pi, 0), (π, 0),
(3π, 0). Separatrices are generated
from equilibria and G(x, y) = 2E,
with E = 2g/L and g/L = 10.


