Chemical Separation Train: Xylene, Styrene, Toluene, and Benzene are separated in 3 distillation columns. Symbols *Ft*, *D*, *B*, *D*1, *B*1, *D*2, *B*2 are molar flow rates in mol/min.

Balance Equations. The four Xylene separations imply balance equation 0.05D1 + 0.16B1 + 0.15D2 + 0.24B2 = 0.15(70) kg-mol, based on 1 min of operation. There are 3 other similar equations, for styrene, toluene and benzene. Multiply by 100 to produce the balance equations

Xylene: 5 D1 + 16 B1 + 15 D2 + 24 B2 = 15(70) Styrene: 4 D1 + 26 B1 + 10 D2 + 65 B2 = 25(70) Toluene: 51 D1 + 42 B1 + 54 D2 + 10 B2 = 40(70) Benzene: 40 D1 + 16 B1 + 21 D2 + 1 B2 = 20(70)

Molar Flow Rates. Because D flows to column 2, then D = D1 + B1. Molar flow rates are computed individually in distillation column 2 as a linear combination of vector separations:

(Xylene molar flow rate)	(5)		(16)	
Styrene molar flow rate	<i>D</i> 1	4	B1	26	
Toluene molar flow rate	$=\frac{100}{100}$	51	$+\frac{100}{100}$	42	ŀ
Benzene molar flow rate)	$\left(40 \right)$		$\left(16 \right)$	

(a) Solve the balance equations for D1, B1, D2, B2. Answers: About 18.35, 3.91, 27.78, 19.95.

(b) Compute the four individual molar flow rates for distillation column 2. Answers: About 1.5, 1.75, 11.0, 7.97.

References: Linear Algebraic Equations, No Matrices (Math 2250)

http://www.math.utah.edu/~gustafso/s2015/2250/linearequDRAFT.pdf. Michael Cutlip and Mordecai Shacham, Problem Solving in Chemical Engineering with Numerical Methods, Prentice-Hall (1998) ISBN-10: 0138625662.