Chemical Separation Train: Xylene, Styrene, Toluene, and Benzene are separated in 3 distillation columns. Symbols $F t, D, B, D 1, B 1, D 2, B 2$ are molar flow rates in $\mathrm{mol} / \mathrm{min}$.


Balance Equations. The four Xylene separations imply balance equation $0.05 D 1+0.16 B 1+$ $0.15 D 2+0.24 B 2=0.15(70) \mathrm{kg}-\mathrm{mol}$, based on 1 min of operation. There are 3 other similar equations, for styrene, toluene and benzene. Multiply by 100 to produce the balance equations

$$
\begin{array}{lr}
\text { Xylene: } & 5 \mathrm{D} 1+16 \mathrm{~B} 1+15 \mathrm{D} 2+24 \mathrm{~B} 2=15(70) \\
\text { Styrene: } & 4 \mathrm{D} 1+26 \mathrm{~B} 1+10 \mathrm{D} 2+65 \mathrm{~B} 2=25(70) \\
\text { Toluene: } 51 \mathrm{D} 1+42 \mathrm{~B} 1+54 \mathrm{D} 2+10 \mathrm{~B} 2=40(70) \\
\text { Benzene: } & 40 \mathrm{D} 1+16 \mathrm{~B} 1+21 \mathrm{D} 2+1 \mathrm{~B} 2=20(70)
\end{array}
$$

Molar Flow Rates. Because $D$ flows to column 2, then $D=D 1+B 1$. Molar flow rates are computed individually in distillation column 2 as a linear combination of vector separations:

$$
\left(\begin{array}{c}
\text { Xylene molar flow rate } \\
\text { Styrene molar flow rate } \\
\text { Toluene molar flow rate } \\
\text { Benzene molar flow rate }
\end{array}\right)=\frac{D 1}{100}\left(\begin{array}{r}
5 \\
4 \\
51 \\
40
\end{array}\right)+\frac{B 1}{100}\left(\begin{array}{l}
16 \\
26 \\
42 \\
16
\end{array}\right) .
$$

(a) Solve the balance equations for D1, B1, D2, B2.

Answers: About 18.35, 3.91, 27.78, 19.95.
(b) Compute the four individual molar flow rates for distillation column 2.

Answers: About 1.5, 1.75, 11.0, 7.97.
References: Linear Algebraic Equations, No Matrices (Math 2250)
http://www.math.utah.edu/~gustafso/s2015/2250/linearequDRAFT.pdf.
Michael Cutlip and Mordecai Shacham, Problem Solving in Chemical Engineering with Numerical Methods, Prentice-Hall (1998) ISBN-10: 0138625662.

