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Applied Differential Equations

A Course for Science and Engineering

Organization. Each chapter of the text is organized in sections that
represent one or two classroom lectures of 50 minutes each. The outside
work for these divisions requires one to six hours, depending upon the depth
of study.

Each section within a chapter consists of three distinct parts. The divi-
sions represent the lecture, examples and technical details. Generally,
proofs of theorems or long justifications of formulas are delayed until after
the examples. The lectures contain only the briefest examples, figures and
illustrations.

A key to a successful course is a weekly session dedicated to review, drill,
answers, solutions, exposition and exam preparation. While group meetings
are important, individual effort is required to flesh out the details and to
learn the subject in depth. The textbook design supports targeted self-study
through its examples and exercises.

There is a defense for this style of presentation, matched equally by a long
list of criticisms. The defense is that this style represents how material is
presented in classroom lectures, and how the topics are studied in the private
life of a student. Certainly, students don’t read everything in the textbook,
and this style addresses the issue of what to skip and what to read in detail.
The criticisms include a departure from standard textbooks, which intermix
theory and examples and proofs. Additional criticisms include a general need
to flip pages to look up details.

Prerequisites. Beginning sections of chapters require college algebra,
basic high school geometry, coordinate geometry, elementary trigonometry,
differential calculus and integral calculus. Several variable calculus and linear
algebra are assumed for certain advanced topics. Instructors are the best
judges of what to include and what to skip, concerning advanced topics in
this textbook.

Survey course. A complete survey course in differential equations for
engineering and science can be constructed from the lectures and examples,
by skipping the technical details supplied in the text. Interested students



ii CONTENTS

can read the details to obtain a deeper introduction to the subject. Such
survey courses will necessarily contact more chapters and trade the depth of
a conventional course for a faster pace, easier topics, and more variety.

Conventional Course. Differential equations courses at the under-
graduate level will present some or all of the technical details in class, as
part of the lecture. Deeper study with technical details is warranted for spe-
cialties like physics and electrical engineering. Hybrid courses that combine
the conventional course and the engineering course can be realized.

To the Student. Expertise in the background topics is expected of
students only after review and continued use in the course, especially by
writing solutions to exercises. Instructors are advised that an exercise list
and subsequent evaluation of the work is essential for successful use of the
text.

Matched in the text are examples, exercises and odd answers. To learn the
subject, not only is it required to solve exercises, but to write exercises,
which is not different from writing in a foreign language.

Writing requires two or more drafts and a final report or presentation. En-
gineering paper and lineless duplicator paper encourage final reports with
adequate white space between equations. Pencil and eraser save time. Pens
and word processors waste time.

Contributions to legibility, organization and presentation of hand-written
exercises were made at The University of Utah, by numerous creative en-
gineering students, over the years 1990-2016. Their ideas produced the
suggestions below, which were applied to the text examples and illustra-
tions.

1. A report is hand-written by pencil on printer paper or engineering
paper. It starts with a problem statement followed perhaps by a final
answer summary. Supporting material appears at the end, like a tax
return.

2. Mathematical notation is on the left, text on the right, often a 60%
to 40% ratio. One equal sign per line. Justify equations left or align
on the equal signs. Vertical white space separates equation displays.

3. Text is left-justified on the right side. It includes explanations, refer-
ences by keyword or page number, statements and definitions, refer-
ences to delayed details (long calculations, graphics, answer checks).

4. Every report has an answer check. It is usual to see back of book
as the only detail. Proofs have no answer check.

5. No suggestion is a rule: invent your own style by theft of good ideas
and rejection of unsuitable ideas.
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Work and School. Students studying in isolation are increasing in
number, because their jobs and family drive their university schedules. In
spite of their forced isolation from the classroom, working students with
families seek advice from their instructors by telephone, email and office
visits. They make use of study groups and supplemental instruction. Course
design in universities has evolved to recognize the shift from a predominantly
non-working student population to its present constituency.
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Exercises in Progress, August 2016.
This PDF is a draft of my textbook written over the years 1999-2016.
Please, do not distribute this PDF, because it contains many errors,

as yet undiscovered.

Ch 1. Already completed 74 + 52 + 50 + 46 + 44 + 56 =
322.

Ch 2. Already completed 86 + 64 + 64 + 70 + 66 + 98 +
58 + 42 + 30 + 70 = 648.

Ch 3. Already completed 36 + 80 + 50 + 48 + 22 = 236.

Ch 4. Already completed 52 + 38 + 34 + 24 + 20 + 28 +
24 + 40 + 12 = 272.

Ch 5. Already completed 128 + 63 + 106 + 90 + 58 = 445.

Ch 6. Already completed 87 + 36 + 0 + 68 + 30 + 63 +
36 + 75 + 46 = 278. Need repair for missing exercises in 6.3
and 6.9

Ch 7. Already completed 30 + 14 + 20 + 8 + 16 + 51 =
139. Add 10 to 7.4.

Ch 8. Already completed 26 + 68 + 16 + 0 + 0 + 0 + 0 +
0 = 110. Add as follows: 8.3 += 40, 8.4 += 40, 8.5 += 40,
8.6 += 30, 8.7 += 30, 8.8 += 10.

Ch 9. Already completed 35 + 0 + 66 = 101. Add as follows:
9.2 += 40. Fix blanks in 9.1, 9.3

Ch 10. Already completed 0 + 0 + 0 + 0 = 0. Add 30 to
each of 10.1, 10.2, 10.3 and 20 to 10.4.

Ch 11. Already completed 0 + 0 + 0 + 54 + 0 + 94 + 0 +
0 + 0 = 148. Add as follows: 11.1 += 30, 11.2 += 40, 11.3
+= 40, 11.4 has blanks, 11.5 += 30, 11.7 += 20, 11.8 +=
20, 11.9 += 30.

Ch 12. Already completed 0 + 0 + 0 + 0 + 0 + 10 + 4 +
26 = 40. Add as follows: 12.1 += 10, 12.2 += 40, 11.3 +=
30, 11.4 += 30, 11.5 += 30, 11.6 += 20, 11.7 += 20, 11.8
has blanks.

Appendix: Already completed 54 + 38 + 28 + 24 = 144.

About 2883 problems are already prepared. More to come,
about 740.
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Indexing

Did ch 1,2,3,5

To do: other chapters. Record here when finished.



Chapter 11

Systems of Differential
Equations

Contents
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11.9 Numerical Methods for Systems . . . . . . . 818

Linear systems. A linear system is a system of differential equa-
tions of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval
a < t < b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called
non-homogeneous.

Matrix Notation for Systems. A non-homogeneous system of
linear equations (1) is written as the equivalent vector-matrix system

~x ′ = A(t)~x +~f (t),
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where

~x =

 x1
...
xn

 , ~f =

 f1
...
fn

 , A =

 a11 · · · a1n
... · · ·

...
am1 · · · amn

 .

11.1 Examples of Systems

Brine Tank Cascade ................. 740

Cascades and Compartment Analysis ................. 741

Recycled Brine Tank Cascade ................. 742

Pond Pollution ................. 743

Home Heating ................. 745

Chemostats and Microorganism Culturing ................. 747

Irregular Heartbeats and Lidocaine ................. 749

Nutrient Flow in an Aquarium ................. 750

Biomass Transfer ................. 751

Pesticides in Soil and Trees ................. 752

Forecasting Prices ................. 753

Coupled Spring-Mass Systems ................. 754

Boxcars ................. 756

Monatomic Crystals ................. 757

Electrical Network I ................. 757

Electrical Network II ................. 758

Logging Timber by Helicopter ................. 759

Earthquake Effects on Buildings ................. 760

Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as
in Figure 1.
water

C

A

B

Figure 1. Three brine
tanks in cascade.
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It is supposed that fluid enters tank A at rate r, drains from A to B
at rate r, drains from B to C at rate r, then drains from tank C at
rate r. Hence the volumes of the tanks remain constant. Let r = 10, to
illustrate the ideas.

Uniform stirring of each tank is assumed, which implies uniform salt
concentration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank.
We suppose water containing no salt is added to tank A . Therefore,
the salt in all the tanks is eventually lost from the drains. The cascade
is modeled by the chemical balance law

rate of change = input rate − output rate.

Application of the balance law, justified below in compartment analysis,
results in the triangular differential system

x′1 = −1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

The solution, to be justified later in this chapter, is given by the equations

x1(t) = x1(0)e−t/2,

x2(t) = −2x1(0)e−t/2 + (x2(0) + 2x1(0))e−t/4,

x3(t) =
3

2
x1(0)e−t/2 − 3(x2(0) + 2x1(0))e−t/4

+ (x3(0)− 3

2
x1(0) + 3(x2(0) + 2x1(0)))e−t/6.

Cascades and Compartment Analysis

A linear cascade is a diagram of compartments in which input and
output rates have been assigned from one or more different compart-
ments. The diagram is a succinct way to summarize and document the
various rates.

The method of compartment analysis translates the diagram into a
system of linear differential equations. The method has been used to
derive applied models in diverse topics like ecology, chemistry, heating
and cooling, kinetics, mechanics and electricity.

The method. Refer to Figure 2. A compartment diagram consists of
the following components.

Variable Names Each compartment is labelled with a variable X.
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Arrows Each arrow is labelled with a flow rate R.

Input Rate An arrowhead pointing at compartment X docu-
ments input rate R.

Output Rate An arrowhead pointing away from compartment X
documents output rate R.

0

x3

x2x1

x3/6

x2/4

x1/2

Figure 2. Compartment
analysis diagram.
The diagram represents the
classical brine tank problem of
Figure 1.

Assembly of the single linear differential equation for a diagram com-
partment X is done by writing dX/dt for the left side of the differential
equation and then algebraically adding the input and output rates to ob-
tain the right side of the differential equation, according to the balance
law

dX

dt
= sum of input rates− sum of output rates

By convention, a compartment with no arriving arrowhead has input
zero, and a compartment with no exiting arrowhead has output zero.
Applying the balance law to Figure 2 gives one differential equation for
each of the three compartments x1 , x2 , x3 .

x′1 = 0− 1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

Recycled Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as
in Figure 3.

A

B

C

Figure 3. Three brine tanks
in cascade with recycling.

Suppose that fluid drains from tank A to B at rate r, drains from tank
B to C at rate r, then drains from tank C to A at rate r. The tank
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volumes remain constant due to constant recycling of fluid. For purposes
of illustration, let r = 10.

Uniform stirring of each tank is assumed, which implies uniform salt
concentration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank.
No salt is lost from the system, due to recycling. Using compartment
analysis, the recycled cascade is modeled by the non-triangular system

x′1 = −1

6
x1 +

1

6
x3,

x′2 =
1

6
x1 − 1

3
x2,

x′3 =
1

3
x2 − 1

6
x3.

The solution is given by the equations

x1(t) = c1 + (c2 − 2c3)e
−t/3 cos(t/6) + (2c2 + c3)e

−t/3 sin(t/6),

x2(t) =
1

2
c1 + (−2c2 − c3)e−t/3 cos(t/6) + (c2 − 2c3)e

−t/3 sin(t/6),

x3(t) = c1 + (c2 + 3c3)e
−t/3 cos(t/6) + (−3c2 + c3)e

−t/3 sin(t/6).

At infinity, x1 = x3 = c1, x2 = c1/2. The meaning is that the total
amount of salt is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.

Pond Pollution

Consider three ponds connected by streams, as in Figure 4. The first
pond has a pollution source, which spreads via the connecting streams
to the other ponds. The plan is to determine the amount of pollutant in
each pond.

1

23

f(t)

Figure 4. Three ponds 1, 2, 3
of volumes V1, V2, V3 connected
by streams. The pollution
source f(t) is in pond 1.

Assume the following.

• Symbol f(t) is the pollutant flow rate into pond 1 (lb/min).

• Symbols f1, f2, f3 denote the pollutant flow rates out of ponds 1,
2, 3, respectively (gal/min). It is assumed that the pollutant is
well-mixed in each pond.



744 Systems of Differential Equations

• The three ponds have volumes V1, V2, V3 (gal), which remain con-
stant.

• Symbols x1(t), x2(t), x3(t) denote the amount (lbs) of pollutant in
ponds 1, 2, 3, respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g.,
pond 1 is emptied with flux f1 times x1(t)/V1. A compartment analysis
is summarized in the following diagram.

x2

x3

x1
f1x1/V1f(t)

f3x3/V3 f2x2/V2

Figure 5. Pond diagram.
The compartment diagram
represents the three-pond
pollution problem of Figure 4.

The diagram plus compartment analysis gives the following differential
equations.

x′1(t) =
f3
V3
x3(t)−

f1
V1
x1(t) + f(t),

x′2(t) =
f1
V1
x1(t)−

f2
V2
x2(t),

x′3(t) =
f2
V2
x2(t)−

f3
V3
x3(t).

For a specific numerical example, take fi/Vi = 0.001, 1 ≤ i ≤ 3, and
let f(t) = 0.125 lb/min for the first 48 hours (2880 minutes), thereafter
f(t) = 0. We expect due to uniform mixing that after a long time there
will be (0.125)(2880) = 360 pounds of pollutant uniformly deposited,
which is 120 pounds per pond.

Initially, x1(0) = x2(0) = x3(0) = 0, if the ponds were pristine. The
specialized problem for the first 48 hours is

x′1(t) = 0.001x3(t)− 0.001x1(t) + 0.125,
x′2(t) = 0.001x1(t)− 0.001x2(t),
x′3(t) = 0.001x2(t)− 0.001x3(t),
x1(0) = x2(0) = x3(0) = 0.

The solution to this system is

x1(t) = e−
3t

2000

(
125
√

3

9
sin

( √
3t

2000

)
− 125

3
cos

( √
3t

2000

))
+

125

3
+

t

24
,

x2(t) = −250
√

3

9
e−

3t
2000 sin

( √
3t

2000

)
+

t

24
,

x3(t) = e−
3t

2000

(
125

3
cos

( √
3t

2000

)
+

125
√

3

9
sin

( √
3t

2000

))
+

t

24
− 125

3
.
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After 48 hours elapse, the approximate pollutant amounts in pounds are

x1(2880) = 162.30, x2(2880) = 119.61, x3(2880) = 78.08.

It should be remarked that the system above is altered by replacing 0.125
by zero, in order to predict the state of the ponds after 48 hours. The
corresponding homogeneous system has an equilibrium solution x1(t) =
x2(t) = x3(t) = 120. This constant solution is the limit at infinity of
the solution to the homogeneous system, using the initial values x1(0) ≈
162.30, x2(0) ≈ 119.61, x3(0) ≈ 78.08.

Home Heating

Consider a typical home with attic, basement and insulated main floor.

Attic

Main
Floor

Basement
Figure 6. Typical home
with attic and basement.
The below-grade basement
and the attic are un-insulated.
Only the main living area is
insulated.

It is usual to surround the main living area with insulation, but the attic
area has walls and ceiling without insulation. The walls and floor in the
basement are insulated by earth. The basement ceiling is insulated by
air space in the joists, a layer of flooring on the main floor and a layer
of drywall in the basement. We will analyze the changing temperatures
in the three levels using Newton’s cooling law and the variables

z(t) = Temperature in the attic,

y(t) = Temperature in the main living area,

x(t) = Temperature in the basement,

t = Time in hours.

Initial data. Assume it is winter time and the outside temperature
in constantly 35◦F during the day. Also assumed is a basement earth
temperature of 45◦F. Initially, the heat is off for several days. The initial
values at noon (t = 0) are then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with
thermostat set for 100◦F. When the heater is running, it provides a 20◦F
rise per hour, therefore it takes some time to reach 100◦F (probably
never!). Newton’s cooling law
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Temperature rate = k(Temperature difference)

will be applied to five boundary surfaces: (0) the basement walls and
floor, (1) the basement ceiling, (2) the main floor walls, (3) the main
floor ceiling, and (4) the attic walls and ceiling. Newton’s cooling law
gives positive cooling constants k0, k1, k2, k3, k4 and the equations

x′ = k0(45− x) + k1(y − x),
y′ = k1(x− y) + k2(35− y) + k3(z − y) + 20,
z′ = k3(y − z) + k4(35− z).

The insulation constants will be defined as k0 = 1/2, k1 = 1/2, k2 = 1/4,
k3 = 1/4, k4 = 3/4 to reflect insulation quality. The reciprocal 1/k
is approximately the amount of time in hours required for 63% of the
temperature difference to be exchanged. For instance, 4 hours elapse for
the main floor. The model:

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

The homogeneous solution in vector form is given in terms of constants
a = 1 +

√
5/4, b = 1 −

√
5/4, and arbitrary constants c1, c2, c3 by the

formula xh(t)
yh(t)
zh(t)

 = c1e
−t

 −1
0
2

+ c2e
−at

 2√
5
1

+ c3e
−bt

 2

−
√

5
1

 .
A particular solution is an equilibrium solution

xp(t)

yp(t)

zp(t)

 =


620
11

745
11

475
11

 .
The homogeneous solution has limit zero at infinity, hence the temper-
atures of the three spaces hover around x = 56.4, y = 67.7, z = 43.2
degrees Fahrenheit. Specific information can be gathered by solving for
c1, c2, c3 according to the initial data x(0) = 45, y(0) = z(0) = 35. The
answers are

c1 = 5, c2 =
25

2
+

7

2

√
5, c3 =

25

2
− 7

2

√
5.

Underpowered heater. To the main floor each hour is added 20◦F, but
the heat escapes at a substantial rate, so that after one hour y ≈ 68◦F.
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After five hours, y ≈ 68◦F. The heater in this example is so inadequate
that even after many hours, the main living area is still under 69◦F.

Forced air furnace. Replacing the space heater by a normal furnace
adds the difficulty of switches in the input, namely, the thermostat
turns off the furnace when the main floor temperature reaches 70◦F,
and it turns it on again after a 4◦F temperature drop. We will suppose
that the furnace has four times the BTU rating of the space heater,
which translates to an 80◦F temperature rise per hour. The study of
the forced air furnace requires two differential equations, one with 20
replaced by 80 (DE 1, furnace on) and the other with 20 replaced by 0
(DE 2, furnace off). The plan is to use the first differential equation on
time interval 0 ≤ t ≤ t1, then switch to the second differential equation
for time interval t1 ≤ t ≤ t2. The time intervals are selected so that
y(t1) = 70 (the thermostat setting) and y(t2) = 66 (thermostat setting
less 4 degrees). Numerical work gives the following results.

Time in minutes Main floor temperature Model Furnace

31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
54.6 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be
seen from the model. Each time the furnace cycles, heat enters the main
floor, then escapes through the other two levels. Consequently, the initial
conditions on each floor applied to models 1 and 2 are changing, resulting
in different solutions to the models on each switch.

Chemostats and Microorganism Culturing

A vessel into which nutrients are pumped, to feed a microorganism,
is called a chemostat1. Uniform distributions of microorganisms and
nutrients are assumed, for example, due to stirring effects. The pumping
is matched by draining to keep the volume constant.

1The October 14, 2004 issue of the journal Nature featured a study of the co-
evolution of a common type of bacteria, Escherichia coli, and a virus that infects
it, called bacteriophage T7. Postdoctoral researcher Samantha Forde set up ”micro-
bial communities of bacteria and viruses with different nutrient levels in a series of
chemostats – glass culture tubes that provide nutrients and oxygen and siphon off
wastes.”
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Output EffluentInput Feed

Figure 7. A Basic
Chemostat. A stirred
bio-reactor operated as a
chemostat, with continuous inflow
and outflow. The flow rates are
controlled to maintain a constant
culture volume.

In a typical chemostat, one nutrient is kept in short supply while all
others are abundant. We consider here the question of survival of the
organism subject to the limited resource. The problem is quantified as
follows:

x(t) = the concentration of the limited nutrient in the vessel,

y(t) = the concentration of organisms in the vessel.

A special case of the derivation in J.M. Cushing’s text for the organism
E. Coli2 is the set of nonlinear differential equations3

x′ = −0.075x+ (0.075)(0.005)− 1

63
g(x)y,

y′ = −0.075y + g(x)y,
(2)

where g(x) = 0.68x(0.0016 + x)−1. Of special interest to the study of
this equation are two linearized equations at equilibria, given by

u′1 = −0.075u1 − 0.008177008175u2,
u′2 = 0.4401515152u2,

(3)

v′1 = −1.690372243 v1 − 0.001190476190 v2,
v′2 = 101.7684513 v1.

(4)

Although we cannot solve the nonlinear system explicitly, nevertheless
there are explicit formulas for u1, u2, v1, v2 that complete the picture of
how solutions x(t), y(t) behave at t = ∞. The result of the analysis is
that E. Coli survives indefinitely in this vessel at concentration y ≈ 0.3.

2In a biology Master’s thesis, two strains of Escherichia coli were grown in a glucose-
limited chemostat coupled to a modified Robbins device containing plugs of silicone
rubber urinary catheter material. Reference: Jennifer L. Adams and Robert J. C.
McLean, Applied and Environmental Microbiology, September 1999, p. 4285-4287,
Vol. 65, No. 9.

3More details can be found in The Theory of the Chemostat Dynamics of Microbial
Competition, ISBN-13: 9780521067348, by Hal Smith and Paul Waltman, June 2008.
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Culture vessel

pump

Effluent reservoir

magnetic stirrer

overflow

Feed Reservoir

stirring bar

heater/cooler
air inlet

air inlet

Figure 8. Laboratory Chemostat.
The components are the Feed reservoir, which contains the nutrients, a stirred
chemical reactor labeled the Culture vessel, and the Effluent reservoir,
which holds the effluent overflow from the reactor.

Irregular Heartbeats and Lidocaine

The human malady of ventricular arrhythmia or irregular heartbeat
is treated clinically using the drug lidocaine.

Figure 9. Xylocaine label, a brand name for
the drug lidocaine.

To be effective, the drug has to be maintained at a bloodstream concen-
tration of 1.5 milligrams per liter, but concentrations above 6 milligrams
per liter are considered lethal in some patients. The actual dosage de-
pends upon body weight. The adult dosage maximum for ventricular
tachycardia is reported at 3 mg/kg.4 The drug is supplied in 0.5%, 1%
and 2% solutions, which are stored at room temperature.

A differential equation model for the dynamics of the drug therapy uses

x(t) = amount of lidocaine in the bloodstream,

y(t) = amount of lidocaine in body tissue.

A typical set of equations, valid for a special body weight only, appears
below; for more detail see J.M. Cushing’s text [Cushing (2004)].

x′(t) = −0.09x(t) + 0.038y(t),
y′(t) = 0.066x(t)− 0.038y(t).

(5)

4Source: Family Practice Notebook, http://www.fpnotebook.com/. The au-
thor is Scott Moses, MD, who practises in Lino Lakes, Minnesota.
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The physically significant initial data is zero drug in the bloodstream
x(0) = 0 and injection dosage y(0) = y0. The answers:

x(t) = −0.3367y0e
−0.1204t + 0.3367y0e

−0.0076t,

y(t) = 0.2696y0e
−0.1204t + 0.7304y0e

−0.0076t.

The answers can be used to estimate the maximum possible safe dosage
y0 and the duration of time that the drug lidocaine is effective.

Nutrient Flow in an Aquarium

Consider a vessel of water containing a radioactive isotope, to be used as
a tracer for the food chain, which consists of aquatic plankton varieties
A and B.

Plankton are aquatic organisms that drift with the currents, typically
in an environment like Chesapeake Bay. Plankton can be divided into
two groups, phytoplankton and zooplankton. The phytoplankton are
plant-like drifters: diatoms and other alga. Zooplankton are animal-like
drifters: copepods, larvae, and small crustaceans.

Figure 10. Left: Bacillaria
paxillifera, phytoplankton.
Right: Anomura Galathea
zoea, zooplankton.

Let

x(t) = isotope concentration in the water,

y(t) = isotope concentration in A,

z(t) = isotope concentration in B.

Typical differential equations are

x′(t) = −3x(t) + 6y(t) + 5z(t),
y′(t) = 2x(t)− 12y(t),
z′(t) = x(t) + 6y(t)− 5z(t).

The answers are

x(t) = 6c1 + (1 +
√

6)c2e
(−10+

√
6)t + (1−

√
6)c3e

(−10−
√
6)t,

y(t) = c1 + c2e
(−10+

√
6)t + c3e

(−10−
√
6)t,

z(t) =
12

5
c1 −

(
2 +
√

1.5
)
c2e

(−10+
√
6)t +

(
−2 +

√
1.5
)
c3e

(−10−
√
6)t.
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The constants c1, c2, c3 are related to the initial radioactive isotope
concentrations x(0) = x0, y(0) = 0, z(0) = 0, by the 3 × 3 system of
linear algebraic equations

6c1 + (1 +
√

6)c2 + (1−
√

6)c3 = x0,
c1 + c2 + c3 = 0,

12

5
c1 −

(
2 +
√

1.5
)
c2 +

(
−2 +

√
1.5
)
c3 = 0.

Biomass Transfer

Consider a European forest having one or two varieties of trees. We
select some of the oldest trees, those expected to die off in the next few
years, then follow the cycle of living trees into dead trees. The dead trees
eventually decay and fall from seasonal and biological events. Finally,
the fallen trees become humus.

Figure 11. Forest Biomass. Total biomass is a parameter used to assess

atmospheric carbon that is harvested by trees. Forest management uses biomass

subclasses to classify fire risk.

Let variables x, y, z, t be defined by

x(t) = biomass decayed into humus,

y(t) = biomass of dead trees,

z(t) = biomass of living trees,

t = time in decades (decade = 10 years).

A typical biological model is

x′(t) = −x(t) + 3y(t),
y′(t) = −3y(t) + 5z(t),
z′(t) = −5z(t).
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Suppose there are no dead trees and no humus at t = 0, with initially z0
units of living tree biomass. These assumptions imply initial conditions
x(0) = y(0) = 0, z(0) = z0. The solution is

x(t) =
15

8
z0
(
e−5t − 2e−3t + e−t

)
,

y(t) =
5

2
z0
(
−e−5t + e−3t

)
,

z(t) = z0e
−5t.

The live tree biomass z(t) = z0e
−5t decreases according to a Malthusian

decay law from its initial size z0. It decays to 60% of its original biomass
in one year. Interesting calculations that can be made from the other
formulas include the future dates when the dead tree biomass and the
humus biomass are maximum. The predicted dates are approximately
2.5 and 8 years hence, respectively.

The predictions made by this model are trends extrapolated from rate
observations in the forest. Like weather prediction, it is a calculated
guess that disappoints on a given day and from the outset has no pre-
dictable answer.

Total biomass is considered an important parameter to assess atmo-
spheric carbon that is harvested by trees. Biomass estimates for forests
since 1980 have been made by satellite remote sensing data with instances
of 90% accuracy (Science 87(5), September 2004).

Pesticides in Soil and Trees

A Washington cherry orchard was sprayed with pesticides.

Figure 12. Cherries in June.

Assume that a negligible amount of pesticide was sprayed on the soil.
Pesticide applied to the trees has a certain outflow rate to the soil, and
conversely, pesticide in the soil has a certain uptake rate into the trees.
Repeated applications of the pesticide are required to control the insects,
which implies the pesticide levels in the trees varies with time. Quantize
the pesticide spraying as follows.
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x(t) = amount of pesticide in the trees,

y(t) = amount of pesticide in the soil,

r(t) = amount of pesticide applied to the trees,

t = time in years.

A typical model is obtained from input-output analysis, similar to the
brine tank models:

x′(t) = 2x(t)− y(t) + r(t),
y′(t) = 2x(t)− 3y(t).

In a pristine orchard, the initial data is x(0) = 0, y(0) = 0, because the
trees and the soil initially harbor no pesticide. The solution of the model
obviously depends on r(t). The nonhomogeneous dependence is treated
by the method of variation of parameters infra. Approximate formulas
are

x(t) ≈
∫ t

0

(
1.10e1.6(t−u) − 0.12e−2.6(t−u)

)
r(u)du,

y(t) ≈
∫ t

0

(
0.49e1.6(t−u) − 0.49e−2.6(t−u)

)
r(u)du.

The exponential rates 1.6 and −2.6 represent respectively the accumu-
lation of the pesticide into the soil and the decay of the pesticide from
the trees. The application rate r(t) is typically a step function equal to
a positive constant over a small interval of time and zero elsewhere, or a
sum of such functions, representing periodic applications of pesticide.

Forecasting Prices

A cosmetics manufacturer has a marketing policy based upon the price
x(t) of its salon shampoo.

Figure 13. Salon
shampoo sample.
The marketing strategy for
the shampoo is to set the
price x(t) dynamically to
reflect demand for the
product.
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The production P (t) and the sales S(t) are given in terms of the price
x(t) and the change in price x′(t) by the equations

P (t) = 4− 3

4
x(t)− 8x′(t) (Production),

S(t) = 15− 4x(t)− 2x′(t) (Sales).

The differential equations for the price x(t) and inventory level I(t) are

x′(t) = k(I(t)− I0),
I ′(t) = P (t)− S(t).

The inventory level I0 = 50 represents the desired level. The equations
can be written in terms of x(t), I(t) as follows.

x′(t) = kI(t) − kI0,

I ′(t) =
13

4
x(t) − 6kI(t) + 6kI0 − 11.

If k = 1, x(0) = 10 and I(0) = 7, then the solution is given by

x(t) =
44

13
+

86

13
e−13t/2,

I(t) = 50− 43e−13t/2.

The forecast of price x(t) ≈ 3.39 dollars at inventory level I(t) ≈ 50 is
based upon the two limits

lim
t→∞

x(t) =
44

13
, lim

t→∞
I(t) = 50.

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 14. Three masses
connected by springs. The masses
slide along a frictionless horizontal
surface.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The masses m1, m2, m3 are assumed to be point masses
concentrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs op-
erate according to Hooke’s law: Force = k(elongation).
Constants k1, k2, k3, k4 denote the Hooke’s constants.
The springs restore after compression and extension.

Position
Variables

The symbols x1(t), x2(t), x3(t) denote the mass posi-
tions along the horizontal surface, measured from their
equilibrium positions, plus right and minus left.
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Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion.
In this case, the law is

Newton’s Second Law Force = Sum of the Hooke’s Forces.

The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(6)

The equations are justified in the case of all positive variables by observ-
ing that the first three springs are elongated by x1, x2 − x1, x3 − x2,
respectively. The last spring is compressed by x3, which accounts for the
minus sign.

Another way to justify the equations is through mirror-image symmetry:
interchange k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be
unchanged and equation 3 should become equation 1.

Matrix Formulation. System (6) can be written as a second order
vector-matrix systemm1 0 0

0 m2 0
0 0 m3


x′′1x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4


x1x2
x3

 .
More succinctly, the system is written as

M~x ′′(t) = K~x (t)

where the displacement ~x , mass matrix M and stiffness matrix K
are defined by the formulas

~x =

x1x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .
Numerical example. Let m1 = 1, m2 = 1, m3 = 1, k1 = 2, k2 = 1,
k3 = 1, k4 = 2. Then the system is given by x′′1

x′′2
x′′3

 =

 −3 1 0
1 −2 1
0 1 −3


 x1
x2
x3

 .
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The vector solution is given by the formula x1
x2
x3

 = (a1 cos t+ b1 sin t)

 1
2
1


+
(
a2 cos

√
3t+ b2 sin

√
3t
) 1

0
−1


+ (a3 cos 2t+ b3 sin 2t)

 1
−1

1

 ,
where a1, a2, a3, b1, b2, b3 are arbitrary constants.

Boxcars

A special case of the coupled spring-mass system is three boxcars on a
level track connected by springs, as in Figure 15.

k k

m mm

Figure 15. Three identical
boxcars connected by
identical springs.

Except for the springs on fixed ends, this problem is the same as the one
of the preceding illustration, therefore taking k1 = k4 = 0, k2 = k3 = k,
m1 = m2 = m3 = m gives the systemm 0 0

0 m 0
0 0 m


x′′1x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k


x1x2
x3

 .
Take k/m = 1 to obtain the illustration

~x ′′ =

−1 1 0
1 −2 1
0 1 −1

~x ,
which has vector solution

~x = (a1 + b1t)

 1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2

1

 ,
where a1, a2, a3, b1, b2, b3 are arbitrary constants.
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The solution expression can be used to discover what happens to the
boxcars when the springs act normally upon compression but disengage
upon expansion. An interesting physical situation is when one car moves
along the track, contacts two stationary cars, then transfers its momen-
tum to the other cars, followed by disengagement.

Monatomic Crystals

Figure 16. A Crystal Model.

The n crystals are identical masses m assumed connected by equal springs of

Hooke’s constant k. The last mass is connected to the first mass.

The scalar differential equations for Figure 16 are written for mass po-
sitions x1, . . . , xn, with x0 = xn, xn+1 = x1 to account for the ring of
identical masses (periodic boundary condition). Then for k = 1, . . . , n

m
d2xk
dt2

= k(xk+1 − xk) + k(xk−1 − xk) = k(xk−1 − 2xk + xk+1).

These equations represent a system x′′ = Ax, where the symmetric ma-
trix of coefficients A = M−1K is given for n = 5 and k/m = 1 by

A =


−2 1 0 0 1

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2

 .

If n = 3 and k/m = 1, then A =

−2 1 1
1 −2 1
1 1 −2

 and the solutions x1, x2,

x3 are linear combinations of the functions 1, t, cos
√

3t, sin
√

3t.

Electrical Network I

Consider the LR-network of Figure 17.

R1

i3
R3R2

L3L2

L1i1

i2

Figure 17. An
electrical network.
There are three
resistors R1, R2, R3

and three inductors
L1, L2, L3. The
currents i1, i2, i3 are
defined between
nodes (black dots).
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The derivation of the differential equations for the loop currents i1, i2,
i3 uses Kirchhoff’s laws and the voltage drop formulas for resistors and
inductors. The black dots in the diagram are the nodes that determine
the beginning and end of each of the currents i1, i2, i3. Currents are
defined only on the outer boundary of the network. Kirchhoff’s node law
determines the currents across L2, L3 (arrowhead right) as i2 − i1 and
i3−i1, respectively. Similarly, i2−i3 is the current across R1 (arrowhead
down). Using Ohm’s law VR = RI and Faraday’s law VL = LI ′ plus
Kirchhoff’s loop law algebraic sum of the voltage drops is zero around a
closed loop (see the maple code below), we arrive at the model

i′1 = −
(
R2

L1

)
i2 −

(
R3

L1

)
i3,

i′2 = −
(
R2

L2
+
R2

L1

)
i2 +

(
R1

L2
− R3

L1

)
i3,

i′3 =

(
R1

L3
− R2

L1

)
i2 −

(
R1

L3
+
R3

L1
+
R3

L3

)
i3

A computer algebra system is helpful to obtain the differential equations
from the closed loop formulas. Part of the theory is that the number of
equations equals the number of holes in the network, called the connec-
tivity. Here’s some maple code for determining the equations in scalar
and also in vector-matrix form.

loop1:=L1*D(i1)+R3*i3+R2*i2=0;

loop2:=L2*D(i2)-L2*D(i1)+R1*(i2-i3)+R2*i2=0;

loop3:=L3*D(i3)-L3*D(i1)+R3*i3+R1*(i3-i2)=0;

f1:=solve(loop1,D(i1));

f2:=solve(subs(D(i1)=f1,loop2),D(i2));

f3:=solve(subs(D(i1)=f1,loop3),D(i3));

with(linalg):

jacobian([f1,f2,f3],[i1,i2,i3]);

Electrical Network II

Consider the LR-network of Figure 18. This network produces only two
differential equations, even though there are three holes (connectivity
3). The derivation of the differential equations parallels the previous
network, so nothing will be repeated here.

A computer algebra system is used to obtain the differential equations
from the closed loop formulas. Below is maple code to generate the
equations i′1 = f1, i

′
2 = f2, i3 = f3.

loop1:=L1*D(i1)+R2*(i1-i2)+R1*(i1-i3)=0;

loop2:=L2*D(i2)+R3*(i2-i3)+R2*(i2-i1)=0;
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loop3:=R3*(i3-i2)+R1*(i3-i1)=E;

f3:=solve(loop3,i3);

f1:=solve(subs(i3=f3,loop1),D(i1));

f2:=solve(subs(i3=f3,loop2),D(i2));

E

R1 R2

i1 L1

R3

i3 i2

L2

Figure 18. An electrical network.

There are three resistors R1, R2, R3, two inductors L1, L2 and a battery E.

The currents i1, i2, i3 are defined between nodes (black dots).

The model, in the special case L1 = L2 = 1 and R1 = R2 = R3 = R:

i′1 = − 3R

2
i1 +

3R

2
i2 +

E

2
,

i′2 =
3R

2
i1 − 3R

2
i2 +

E

2
,

i3 =
1

2
i1 +

1

2
i2 +

E

2R
.

It is easily justified that the solution of the differential equations for
initial conditions i1(0) = i2(0) = 0 is given by

i1(t) =
E

2
t, i2(t) =

E

2
t.

Logging Timber by Helicopter

Certain sections of National Forest in the USA do not have logging ac-
cess roads. In order to log the timber in these areas, helicopters are
employed to move the felled trees to a nearby loading area, where they
are transported by truck to the mill. The felled trees are slung beneath
the helicopter on cables.

Figure 19. Helicopter logging.
Left: An Erickson helicopter lifts felled
trees.
Right: Two trees are attached to the
cable to lower transportation costs.
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The payload for two trees approximates a double pendulum, which oscil-
lates during flight. The angles of oscillation θ1, θ2 of the two connecting
cables, measured from the gravity vector direction, satisfy the following
differential equations, in which g is the gravitation constant, m1, m2

denote the masses of the two trees and L1, L2 are the cable lengths.

(m1 +m2)L
2
1θ
′′
1 + m2L1L2θ

′′
2 + (m1 +m2)L1gθ1 = 0,

m2L1L2θ
′′
1 + m2L

2
2θ
′′
2 + m2L2gθ2 = 0.

This model is derived assuming small displacements θ1, θ2, that is,
sin θ ≈ θ for both angles, using the following diagram.

θ2

L1

L2

m2

m1
θ1

Figure 20. Logging Timber by Helicopter.
The cables have lengths L1, L2. The angles θ1, θ2 are
measured from vertical.

The lengths L1, L2 are adjusted on each trip for the length of the trees,
so that the trees do not collide in flight with each other nor with the
helicopter. Sometimes, three or more smaller trees are bundled together
in a package, which is treated here as identical to a single, very thick
tree hanging on the cable.

Vector-matrix model. The angles θ1, θ2 satisfy the second-order
vector-matrix equation(

(m1 +m2)L1 m2L2

L1 L2

)(
θ1
θ2

)′′
= −

(
m1g +m2g 0

0 g

)(
θ1
θ2

)
.

This system is equivalent to the second-order system

(
θ1
θ2

)′′
=

 −
m1g +m2g

L1m1

m2g

L1m1

m1g +m2 g

L2m1
−(m1 +m2) g

L2m1


(
θ1
θ2

)
.

Earthquake Effects on Buildings

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of
a 5-floor building; see Figure 21. The effect of the earthquake depends
upon the natural frequencies of oscillation of the floors.

In the case of a single-floor building, the center-of-mass position x(t)
of the building satisfies mx′′ + kx = E and the natural frequency of
oscillation is

√
k/m. The earthquake force E is given by Newton’s second

law: E(t) = −mF ′′(t). If ω ≈
√
k/m, then the amplitude of x(t) is large
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compared to the amplitude of the force E. The amplitude increase in
x(t) means that a small-amplitude earthquake wave can resonant with
the building and possibly demolish the structure.

3

F

4

5

1

2

Figure 21. A 5-Floor
Building.
A horizontal earthquake wave F
affects every floor. The actual wave
has wavelength many times larger
than the illustration.

The following assumptions and symbols are used to quantize the oscilla-
tion of the 5-floor building.

• Each floor is considered a point mass located at its center-of-mass.
The floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restor-
ing force or Hooke’s force −k(elongation). The Hooke’s constants
are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5.
The equilibrium position is x1 = · · · = x5 = 0.

• Damping effects of the floors are ignored. This is a frictionless
system.

The differential equations for the model are obtained by competition:
the Newton’s second law force is set equal to the sum of the Hooke’s
forces and the external force due to the earthquake wave. This results in
the following system, where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and
F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.

In particular, the equations for a floor depend only upon the neighboring
floors. The bottom floor and the top floor are exceptions: they have just
one neighboring floor.

Vector-matrix second order system. Define

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , ~x =


x1
x2
x3
x4
x5

 , ~H =


E1

E2

E3

E4

E5

 ,
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K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6

 .
In the last row, k6 = 0, to reflect the absence of a floor above the fifth.
The second order system is

M~x ′′(t) = K~x (t) + ~H (t).

The matrix M is called the mass matrix and the matrix K is called
the Hooke’s matrix. The external force ~H (t) can be written as a
scalar function E(t) = −F ′′(t) times a constant vector:

~H (t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .

Identical floors. Let us assume that all floors have the same mass
m and the same Hooke’s constant k. Then M = mI and the equation
becomes

~x ′′ = m−1


−2k k 0 0 0
k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

~x − F0ω
2 cos(ωt)


1
1
1
1
1

 .

The Hooke’s matrix K is symmetric (KT = K) with negative entries
only on the diagonal. The last diagonal entry is −k (a common error is
to write −2k).

Particular solution. The method of undetermined coefficients predicts
a trial solution ~xp(t) = ~c cosωt, because each differential equation has
nonhomogeneous term −F0ω

2 cosωt. The constant vector ~c is found
by trial solution substitution. Cancel the common factor cosωt in the
substituted equation to obtain the equation

(
m−1K + ω2 I

)
~c = F0ω

2~b ,

where ~b is column vector of ones in the preceding display. Let B(ω) =

m−1K + ω2 I. Then the formula B−1 =
adj(B)

det(B)
gives

~c = F0ω
2 adj(B(ω))

det(B(ω))
~b .

The constant vector ~c can have a large magnitude when det(B(ω)) ≈ 0.
This occurs when −ω2 is nearly an eigenvalue of m−1K.



11.1 Examples of Systems 763

Homogeneous solution. The theory of this chapter gives the homo-
geneous solution ~xh(t) as the sum

~xh(t) =
5∑
j=1

(aj cosωjt+ bj sinωjt)~v j

where r = ωj and ~v = ~v j 6= ~0 satisfy(
1

m
K + r2 I

)
~v = ~0 .

Special case k/m = 10. Then

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


and the values ω1, . . . , ω5 are found by solving the determinant equation
det((1/m)K + ω2I) = 0, to obtain the values in Table 1.

Table 1. The natural frequencies for the special case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

General solution. Superposition implies ~x (t) = ~xh(t) + ~xp(t). Both
terms of the general solution represent bounded oscillations.

Resonance effects. The special solution ~xp(t) can be used to ob-
tain some insight into practical resonance effects between the incoming
earthquake wave and the building floors. When ω is close to one of the
frequencies ω1, . . . , ω5, then the amplitude of a component of ~xp can
be very large, causing the floor to take an excursion that is too large to
maintain the structural integrity of the floor.

The physical interpretation is that an earthquake wave of the proper
frequency, having time duration sufficiently long, can demolish a floor
and hence demolish the entire building. The amplitude of the earthquake
wave does not have to be large: a fraction of a centimeter might be
enough to start the oscillation of the floors.
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Earthquakes and Tsunamis

Seismic wave shape was studied for first order equations in Chapter 2,
page 151. Recorded here are some historical notes about seismic waves
and earthquake events.

The original Richter scale, with deprecated use in seismology, was
invented by seismologist C. Richter to rank earthquake power.

The moment magnitude scale (MW ) has largely replaced the original
Richter scale and its modified versions. The highest reported magnitude
is 9.5 MW by the United States Geological Survey for the Concepción,
Chile earthquake of May 22, 1960. News reports and the general public
still refer to earthquake magnitude using the term Richter Scale.

The Sumatra earthquake of December 26, 2004 occurred close to a deep-
sea trench, a subduction zone where one tectonic plate slips beneath
another. Most of the earthquake energy is released in these areas as the
two plates grind towards each other. Estimates of magnitude 8.8 MW

to 9.3 MW followed the event. The US Geological Survey estimated
9.2 MW .

The Chile earthquake and tsunami of 1960 has been documented well.
Here is an account by Dr. Gerard Fryer of the Hawaii Institute of Geo-
physics and Planetology, in Honolulu.

The tsunami was generated by the Chile earthquake of May 22,
1960, the largest earthquake ever recorded: it was magnitude 9.6.
What happened in the earthquake was that a piece of the Pacific
seafloor (or strictly speaking, the Nazca Plate) about the size of
California slid fifty feet beneath the continent of South America.
Like a spring, the lower slopes of the South American continent
offshore snapped upwards as much as twenty feet while land along
the Chile coast dropped about ten feet. This change in the shape of
the ocean bottom changed the shape of the sea surface. Since the
sea surface likes to be flat, the pile of excess water at the surface
collapsed to create a series of waves — the tsunami.

The tsunami, together with the coastal subsidence and flooding,
caused tremendous damage along the Chile coast, where about
2,000 people died. The waves spread outwards across the Pa-
cific. About 15 hours later the waves flooded Hilo, on the island
of Hawaii, where they built up to 30 feet and caused 61 deaths
along the waterfront. Seven hours after that, 22 hours after the
earthquake, the waves flooded the coastline of Japan where 10-foot
waves caused 200 deaths. The waves also caused damage in the
Marquesas, in Samoa, and in New Zealand. Tidal gauges through-
out the Pacific measured anomalous oscillations for about three
days as the waves bounced from one side of the ocean to the other.
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11.2 Basic First-order System Methods

Solving 2× 2 Systems

It is shown here that any constant linear system

~u ′ = A~u , A =

(
a b
c d

)

can be solved by one of the following elementary methods.

(a) The integrating factor method for y′ = p(x)y + q(x).

(b) The second order constant coefficient formulas in Theo-
rem 45, Chapter 5.

Triangular A. Let’s assume b = 0, so that A is lower triangular. The
upper triangular case is handled similarly. Then ~u ′ = A~u has the scalar
form

u′1 = au1,
u′2 = cu1 + du2.

The first differential equation is solved by the growth/decay formula:

u1(t) = u0e
at.

Then substitute the answer just found into the second differential equa-
tion to give

u′2 = du2 + cu0e
at.

This is a linear first order equation of the form y′ = p(x)y + q(x), to be
solved by the integrating factor method. Therefore, a triangular system
can always be solved by the first order integrating factor method.

An illustration. Let us solve ~u ′ = A~u for the triangular matrix

A =

(
1 0
2 1

)
, representing

{
u′1 = u1,
u′2 = 2u1 + u2.

The first equation u′1 = u1 has solution u1 = c1e
t. The second equation

u′2 = 2u1 + u2 becomes upon substitution of u1 = c1e
t the new equation

u′2 = 2c1e
t + u2,

which is a first order linear differential equation with linear integrating
factor method solution u2 = (2c1t+ c2)e

t. The general solution of ~u ′ =
A~u in scalar form is

u1 = c1e
t, u2 = 2c1te

t + c2e
t.
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The vector form of the general solution is

~u (t) = c1

(
et

2tet

)
+ c2

(
0
et

)
.

The vector basis is the set

B =

{(
et

2tet

)
,

(
0
et

)}
.

Non-Triangular A. In order that A be non-triangular, both b 6= 0
and c 6= 0 must be satisfied. The scalar form of the system ~u ′ = A~u is

u′1 = au1 + bu2,
u′2 = cu1 + du2.

Theorem 1 (Solving Non-Triangular ~u ′ = A~u)
Solutions u1, u2 of ~u ′ = A~u are linear combinations of the list of Euler
solution atoms obtained from the roots r of the quadratic equation

det(A− rI) = 0.

Proof: The method: differentiate the first equation, then use the equations to
eliminate u2, u′2. The result is a second order differential equation for u1. The
same differential equation is satisfied also for u2. The details:

u′′1 = au′1 + bu′2 Differentiate the first equation.

= au′1 + bcu1 + bdu2 Use equation u′2 = cu1 + du2.

= au′1 + bcu1 + d(u′1 − au1) Use equation u′1 = au1 + bu2.

= (a+ d)u′1 + (bc− ad)u1 Second order equation for u1 found

The characteristic equation of u′′1 − (a+ d)u′1 + (ad− bc)u1 = 0 is

r2 − (a+ d)r + (bc− ad) = 0.

Finally, we show the expansion of det(A− rI) is the same characteristic poly-
nomial:

det(A− rI) =

∣∣∣∣ a− r b
c d− r

∣∣∣∣
= (a− r)(d− r)− bc
= r2 − (a+ d)r + ad− bc.

The proof is complete.

The reader can verify that the differential equation for u1 or u2 is exactly

u′′ − trace(A)u′ + det(A)u = 0.

Assume below that A is non-triangular, meaning b 6= 0 and c 6= 0.

Finding u1. Apply the second order formulas, Theorem 45 in Chapter
5, to solve for u1. This involves writing a list of Euler solution atoms
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corresponding to the two roots of the characteristic equation r2 − (a +
d)r + ad − bc = 0, followed by expressing u1 as a linear combination of
the two Euler atoms.

Finding u2. Isolate u2 in the first differential equation by division:

u2 =
1

b
(u′1 − au1).

The two formulas for u1, u2 represent the general solution of the system
~u ′ = A~u , when A is 2× 2.

An illustration. Let’s solve ~u ′ = A~u when

A =

(
1 2
2 1

)
, representing

{
u′1 = u1 + 2u2,
u′2 = 2u1 + u2.

The equation det(A− rI) = 0 is (1− r)2 − 4 = 0 with roots r = −1 and
r = 3. The Euler solution atom list is L = {e−t, e3t}. Then the linear
combination of Euler atoms is u1 = c1e

−t + c2e
3t. The first equation

u′1 = u1 + 2u2 implies u2 = 1
2(u′1 − u1). The scalar general solution of

~u ′ = A~u is then

u1 = c1e
−t + c2e

3t, u2 = −c1e−t + c2e
3t.

In vector form, the general solution is

~u = c1

(
e−t

−e−t

)
+ c2

(
e3t

e3t

)
.

Triangular Methods

Diagonal n×n matrix A = diag(a1, . . . , an). Then the system ~x ′ = A~x
is a set of uncoupled scalar growth/decay equations:

x′1(t) = a1x1(t),
x′2(t) = a2x2(t),

...
x′n(t) = anxn(t).

The solution to the system is given by the formulas

x1(t) = c1e
a1t,

x2(t) = c2e
a2t,

...
xn(t) = cne

ant.

The numbers c1, . . . , cn are arbitrary constants.
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Triangular n× n matrix A. If a linear system ~x ′ = A~x has a square
triangular matrix A, then the system can be solved by first order scalar
methods. To illustrate the ideas, consider the 3× 3 linear system

~x ′ =

 2 0 0
3 3 0
4 4 4

~x .
The coefficient matrix A is lower triangular. In scalar form, the system
is given by the equations

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 3x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 4x3(t).

A recursive method. The system is solved recursively by first order
scalar methods only, starting with the first equation x′1(t) = 2x1(t). This
growth equation has general solution x1(t) = c1e

2t. The second equation
then becomes the first order linear equation

x′2(t) = 3x1(t) + 3x2(t)
= 3x2(t) + 3c1e

2t.

The integrating factor method applies to find the general solution x2(t) =
−3c1e

2t+c2e
3t. The third and last equation becomes the first order linear

equation

x′3(t) = 4x1(t) + 4x2(t) + 4x3(t)
= 4x3(t) + 4c1e

2t + 4(−3c1e
2t + c2e

3t).

The integrating factor method is repeated to find the general solution
x3(t) = 4c1e

2t − 4c2e
3t + c3e

4t.

In summary, the scalar general solution to the system is given by the
formulas

x1(t) = c1e
2t,

x2(t) = −3c1e
2t + c2e

3t,
x3(t) = 4c1e

2t − 4c2e
3t + c3e

4t.

Structure of solutions. A system ~x ′ = A~x for n × n triangular A
has component solutions x1(t), . . . , xn(t) given as polynomials times
exponentials. The exponential factors ea11t, . . . , eannt are expressed in
terms of the diagonal elements a11, . . . , ann of the matrix A. Fewer than
n distinct exponential factors may appear, due to duplicate diagonal
elements. These duplications cause the polynomial factors to appear.
The reader is invited to work out the solution to the system below,
which has duplicate diagonal entries a11 = a22 = a33 = 2.

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 2x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 2x3(t).
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The solution, given below, has polynomial factors t and t2, appearing
because of the duplicate diagonal entries 2, 2, 2, and only one exponential
factor e2t.

x1(t) = c1e
2t,

x2(t) = 3c1te
2t + c2e

2t,
x3(t) = 4c1te

2t + 6c1t
2e2t + 4c2te

2t + c3e
2t.

Conversion to Systems

Routinely converted to a system of equations of first order are scalar
second order linear differential equations, systems of scalar second order
linear differential equations and scalar linear differential equations of
higher order.

Scalar second order linear equations. Consider an equation
au′′ + bu′ + cu = f where a 6= 0, b, c, f are allowed to depend on t,
′ = d/dt. Define the position-velocity substitution

x(t) = u(t), y(t) = u′(t).

Then x′ = u′ = y and y′ = u′′ = (−bu′− cu+f)/a = −(b/a)y− (c/a)x+
f/a. The resulting system is equivalent to the second order equation, in
the sense that the position-velocity substitution equates solutions of one
system to the other:

x′(t) = y(t),

y′(t) = − c(t)
a(t)

x(t)− b(t)

a(t)
y(t) +

f(t)

a(t)
.

The case of constant coefficients and f a function of t arises often enough
to isolate the result for further reference.

Theorem 2 (System Equivalent to Second Order Linear)
Let a 6= 0, b, c be constants and f(t) continuous. Then au′′+bu′+cu = f(t)
is equivalent to the first order system

a~w ′(t) =

(
0 a
−c −b

)
~w (t) +

(
0
f(t)

)
, ~w (t) =

(
u(t)
u′(t)

)
.

Converting second order systems to first order systems. A sim-
ilar position-velocity substitution can be carried out on a system of two
second order linear differential equations. Assume

a1u
′′
1 + b1u

′
1 + c1u1 = f1,

a2u
′′
2 + b2u

′
2 + c2u2 = f2.
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Then the preceding methods for the scalar case give the equivalence
a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2



u1
u′1
u2
u′2


′

=


0 a1 0 0
−c1 −b1 0 0

0 0 0 a2
0 0 −c2 −b2



u1
u′1
u2
u′2

+


0
f1
0
f2

 .
Coupled spring-mass systems. Springs connecting undamped cou-
pled masses were considered at the beginning of this chapter, page 754.
Typical equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)

The equations can be represented by a second order linear system of
dimension 3 of the form M~x ′′ = K~x , where the position ~x , the mass
matrix M and the Hooke’s matrix K are given by the equalities

~x =

 x1
x2
x3

 , M =

 m1 0 0
0 m2 0
0 0 m3

 ,

K =

 −(k1 + k2) k2 0
k2 −(k2 + k3) k3
0 −k3 −(k3 + k4)

 .
Systems of second order linear equations. A second order sys-
tem M~x ′′ = K~x + ~F(t) is called a forced system and ~F is called the
external vector force. Such a system can always be converted to a sec-
ond order system where the mass matrix is the identity, by multiplying
by M−1:

~x ′′ = M−1K~x +M−1~F(t).

The benign form ~x ′′ = A~x + ~G(t), where A = M−1K and ~G = M−1~F ,
admits a block matrix conversion into a first order system:

d

dt

(
~x (t)
~x ′(t)

)
=

(
0 I

A 0

)(
~x (t)
~x ′(t)

)
+

(
~0
~G(t)

)
.

Damped second order systems. The addition of a damper to each
of the masses gives a damped second order system with forcing

M~x ′′ = B~x ′ +K~X + ~F(t).

In the case of one scalar equation, the matrices M , B, K are constants
m, −c, −k and the external force is a scalar function f(t), hence the
system becomes the classical damped spring-mass equation

mx′′ + cx′ + kx = f(t).
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A useful way to write the first order system is to introduce variable
~u = M~x , in order to obtain the two equations

~u ′ = M~x ′, ~u ′′ = B~x ′ +K~x + ~F (t).

Then a first order system in block matrix form is given by(
M 0

0 M

)
d

dt

(
~x (t)
~x ′(t)

)
=

(
0 M

K B

)(
~x (t)
~x ′(t)

)
+

(
~0
~F (t)

)
.

The benign form ~x ′′ = M−1B~x ′+M−1K~x +M−1~F (t), obtained by left-
multiplication by M−1, can be similarly written as a first order system
in block matrix form.

d

dt

(
~x (t)
~x ′(t)

)
=

(
0 I

M−1K M−1B

)(
~x(t)
~x ′(t)

)
+

(
~0

M−1~F(t)

)
.

Higher order linear equations. Every homogeneous nth order
constant-coefficient linear differential equation

y(n) = p0y + · · ·+ pn−1y
(n−1)

can be converted to a linear homogeneous vector-matrix system

d

dx


y
y′

y′′

...

y(n−1)

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
p0 p1 p2 · · · pn−1




y
y′

y′′

...

y(n−1)

 .

This is a linear system ~u ′ = A~u where ~u is the n × 1 column vector
consisting of y and its successive derivatives, while the n × n matrix A
is the classical companion matrix of the characteristic polynomial

rn = p0 + p1r + p2r
2 + · · ·+ pn−1r

n−1.

To illustrate, the companion matrix for r4 = a+ br + cr2 + dr3 is

A =


0 1 0 0
0 0 1 0
0 0 0 1
a b c d

 .
The preceding companion matrix has the following block matrix form,
which is representative of all companion matrices.

A =

(
~0 I

a b c d

)
.
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Continuous coefficients. It is routinely observed that the methods
above for conversion to a first order system apply equally as well to
higher order linear differential equations with continuous coefficients. To
illustrate, the fourth order linear equation yiv = a(x)y+b(x)y′+c(x)y′′+
d(x)y′′′ has first order system form ~u ′ = A~u where A is the companion
matrix for the polynomial r4 = a(x) + b(x)r + c(x)r2 + d(x)r3, x held
fixed.

Forced higher order linear equations. All that has been said above
applies equally to a forced linear equation like

yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

It has a conversion to a first order nonhomogeneous linear system

~u ′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 sinx cosx x2

 ~u +


0
0
0

f(x)

 , ~u =


y
y′

y′′

y′′′

 .
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11.3 Structure of Linear Systems

Linear systems. A linear system is a system of differential equa-
tions of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval
a < t < b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called
non-homogeneous.

Matrix Notation for Systems. A non-homogeneous system of
linear equations (1) is written as the equivalent vector-matrix system

~x ′ = A(t)~x +~f (t),

where

~x =

 x1
...
xn

 , ~f =

 f1
...
fn

 , A =

 a11 · · · a1n
... · · ·

...
am1 · · · amn

 .

Existence-uniqueness. The fundamental theorem of Picard and
Lindelöf applied to the matrix system ~x ′ = A(t)~x + ~f (t) says that a
unique solution ~x (t) exists for each initial value problem and the solu-
tion exists on the common interval of continuity of the entries in A(t)
and ~f (t).

Three special results are isolated here, to illustrate how the Picard theory
is applied to linear systems.

Theorem 3 (Unique Zero Solution)
Let A(t) be an m × n matrix with entries continuous on a < t < b. Then
the initial value problem

~x ′ = A(t)~x , ~x(0) = ~0

has unique solution ~x(t) = ~0 on a < t < b.

Theorem 4 (Existence-Uniqueness for Constant Linear Systems)
Let A(t) = A be an m× n matrix with constant entries and let ~x 0 be any
m-vector. Then the initial value problem

~x ′ = A~x , ~x (0) = ~x 0

has a unique solution ~x (t) defined for all values of t.
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Theorem 5 (Uniqueness and Solution Crossings)
Let A(t) be an m × n matrix with entries continuous on a < t < b and

assume ~f (t) is also continuous on a < t < b. If ~x(t) and ~y (t) are solutions
of ~u ′ = A(t)~u + ~f (t) on a < t < b and ~x(t0) = ~y (t0) for some t0,
a < t0 < b, then ~x (t) = ~y (t) for a < t < b.

Superposition. Linear homogeneous systems have linear structure
and the solutions to nonhomogeneous systems obey a principle of su-
perposition.

Theorem 6 (Linear Structure)
Let ~x ′ = A(t)~x have two solutions ~x 1(t), ~x 2(t). If k1, k2 are constants,
then ~x (t) = k1 ~x 1(t) + k2 ~x 2(t) is also a solution of ~x ′ = A(t)~x .

The standard basis {~w k}nk=1. The Picard-Lindelöf theorem applied
to initial conditions ~x (t0) = ~x 0, with ~x 0 successively set equal to the
columns of the n × n identity matrix, produces n solutions ~w 1, . . . ,
~wn to the equation ~x ′ = A(t)~x , all of which exist on the same interval
a < t < b.

The linear structure theorem implies that for any choice of the constants
c1, . . . , cn, the vector linear combination

~x (t) = c1~w 1(t) + c2~w 2(t) + · · ·+ cn~wn(t)(2)

is a solution of ~x ′ = A(t)~x .

Conversely, if c1, . . . , cn are taken to be the components of a given vector
~x 0, then the above linear combination must be the unique solution of
the initial value problem with ~x(t0) = ~x 0. Therefore, all solutions of the
equation ~x ′ = A(t)~x are given by the expression above, where c1, . . . ,
cn are taken to be arbitrary constants. In summary:

Theorem 7 (Basis)
The solution set of ~x ′ = A(t)~x is an n-dimensional subspace of the vector
space of all vector-valued functions ~x (t). Every solution has a unique basis
expansion (2).

Theorem 8 (Superposition Principle)
Let ~x ′ = A(t)~x+~f (t) have a particular solution ~xp(t). If ~x (t) is any solution

of ~x ′ = A(t)~x +~f (t), then ~x (t) can be decomposed as homogeneous plus
particular:

~x(t) = ~xh(t) + ~xp(t).

The term ~xh(t) is a certain solution of the homogeneous differential equation
~x ′ = A(t)~x , which means arbitrary constants c1, c2, . . . have been assigned
certain values. The particular solution ~xp(t) can be selected to be free of
any unresolved or arbitrary constants.
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Theorem 9 (Difference of Solutions)
Let ~x ′ = A(t)~x +~f (t) have two solutions ~x = ~u (t) and ~x = ~v (t). Define
~y (t) = ~u (t)− ~v (t). Then ~y (t) satisfies the homogeneous equation

~y ′ = A(t)~y .

General Solution. We explain general solution by example. If a
formula x = c1e

t + c2e
2t is called a general solution, then it means that

all possible solutions of the differential equation are expressed by this
formula. In particular, it means that a given solution can be represented
by the formula, by specializing values for the constants c1, c2. We expect
the number of arbitrary constants to be the least possible number.

The general solution of ~x ′ = A(t)~x +~f (t) is an expression involving arbi-
trary constants c1, c2, . . . and certain functions. The expression is often
given in vector notation, although scalar expressions are commonplace
and perfectly acceptable. Required is that the expression represents all
solutions of the differential equation, in the following sense:

(a) Every assignment of constants produces a solution of
the differential equation.

(b) Every possible solution is uniquely obtained from the
expression by specializing the constants.

Due to the superposition principle, the constants in the general solution
are identified as multipliers against solutions of the homogeneous differ-
ential equation. The general solution has some recognizable structure.

Theorem 10 (General Solution)
Let A(t) be n×n and ~f (t) n×1, both continuous on an interval a < t < b.

The linear nonhomogeneous system ~x ′ = A(t)~x +~f (t) has general solution
~x given by the expression

~x = ~xh(t) + ~xp(t).

The term ~y = ~xh(t) is a general solution of the homogeneous equation
~y ′ = A(t)~y , in which are to be found n arbitrary constants c1, . . . , cn.
The term ~x = ~xp(t) is a particular solution of ~x ′ = A(t)~x +~f (t), in which
there are present no unresolved nor arbitrary constants.

Recognition of homogeneous solution terms. An expression ~x
for the general solution of a nonhomogeneous equation ~x ′ = A(t)~x +~f (t)
involves arbitrary constants c1, . . . , cn. It is possible to isolate both terms
~xh and ~xp by a simple procedure.

To find ~xp, set to zero all arbitrary constants c1, c2, . . . ; the resulting
expression is free of unresolved and arbitrary constants.
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To find ~xh, we find first the vector solutions ~y = ~uk(t) of ~y ′ = A(t)~y ,
which are multiplied by constants ck. Then the general solution ~xh of
the homogeneous equation ~y ′ = A(t)~y is given by

~xh(t) = c1~u 1(t) + c2~u 2(t) + · · ·+ cn~un(t).

Use partial derivatives on expression ~x to find the column vectors

~uk(t) =
∂

∂ck
~x .

This technique isolates the vector components of the homogeneous solu-
tion from any form of the general solution, including scalar formulas for
the components of ~x . In any case, the general solution ~x of the linear
system ~x ′ = A(t)~x +~f (t) is represented by the expression

~x = c1~u 1(t) + c2~u 2(t) + · · ·+ cn~un(t) + ~xp(t).

In this expression, each assignment of the constants c1, . . . , cn produces
a solution of the nonhomogeneous system, and conversely, each possible
solution of the nonhomogeneous system is obtained by a unique special-
ization of the constants c1, . . . , cn.

To illustrate the ideas, consider a 3× 3 linear system ~x ′ = A(t)~x +~f (t)
with general solution

~x =

 x1
x2
x3


given in scalar form by the expressions

x1 = c1e
t + c2e

−t + t,
x2 = (c1 + c2)e

t + c3e
2t,

x3 = (2c2 − c1)e−t + (4c1 − 2c3)e
2t + 2t.

To find the vector form of the general solution, we take partial derivatives

~uk =
∂~x

∂ck
with respect to the variable names c1, c2, c3:

~u 1 =

 et

et

−e−t + 4e2t

 , ~u 2 =

 e−t

et

2e−t

 , ~u 3 =

 0
e2t

−2e2t

 .
To find ~xp(t), set c1 = c2 = c3 = 0:

~xp(t) =

 t
0

2t

 .
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Finally,

~x = c1~u 1(t) + c2~u 2(t) + c3~u 3(t) + ~xp(t)

= c1

 et

et

−e−t + 4e2t

+ c2

 e−t

et

2e−t

+ c3

 0
e2t

−2e2t

+

 t
0

2t

 .
The expression ~x = c1~u 1(t)+ c2~u 2(t)+ c3~u 3(t)+~xp(t) satisfies required
elements (a) and (b) in the definition of general solution. We will develop
now a way to routinely test the uniqueness requirement in (b).

Independence. Constants c1, . . . , cn in the general solution ~x =
~xh + ~xp appear exactly in the expression ~xh, which has the form

~xh = c1~u 1 + c2~u 2 + · · ·+ cn~un.

A solution ~x uniquely determines the constants. In particular, the zero
solution of the homogeneous equation is uniquely represented, which can
be stated this way:

c1~u 1 + c2~u 2 + · · ·+ cn~un = ~0 implies c1 = c2 = · · · = cn = 0.

This statement equivalently says that the list of n vector-valued functions
~u 1(t), . . . , ~un(t) is linearly independent.

It is possible to write down a candidate general solution to some 3 × 3
linear system ~x ′ = A~x via equations like

x1 = c1e
t + c2e

t + c3e
2t,

x2 = c1e
t + c2e

t + 2c3e
2t,

x3 = c1e
t + c2e

t + 4c3e
2t.

This example was constructed to contain a classic mistake, for purposes
of illustration.

How can we detect a mistake, given only that this expression is supposed
to represent the general solution? First of all, we can test that ~u 1 =
∂~x/∂c1, ~u 2 = ∂~x/∂c2, ~u 3 = ∂~x/∂c3 are indeed solutions. But to insure
the unique representation requirement, the vector functions ~u 1, ~u 2, ~u 3

must be linearly independent. We compute

~u 1 =

 et

et

et

 , ~u 2 =

 et

et

et

 , ~u 3 =

 e2t

2e2t

4e2t

 .
Therefore, ~u 1 = ~u 2, which implies that the functions ~u 1, ~u 2, ~u 3 fail to
be independent. While is is possible to test independence by a rudimen-
tary test based upon the definition, we prefer the following test due to
Norwegian mathematician N. H. Abel (1802-1829).
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Theorem 11 (Abel’s Formula and the Wronskian)
Let ~xh(t) = c1~u 1(t) + · · ·+ cn~un(t) be a candidate general solution to the
equation ~x ′ = A(t)~x . In particular, the vector functions ~u 1(t), . . . , ~un(t)
are solutions of ~x ′ = A(t)~x . Define the Wronskian by

w(t) = det(〈〈〈~u 1(t)| · · · |~un(t))〉〉〉.

Then Abel’s formula holds:

w(t) = e

∫ t

t0
trace(A(s))ds

w(t0).
5

In particular, w(t) is either everywhere nonzero or everywhere zero, accord-
ingly as w(t0) 6= 0 or w(t0) = 0.

Theorem 12 (Abel’s Wronskian Test for Independence)
The vector solutions ~u 1, . . . , ~un of ~x ′ = A(t)~x are independent if and only
if the Wronskian w(t) is nonzero for some t = t0.

Clever use of the point t0 in Abel’s Wronskian test can lead to succinct
independence tests. For instance, let

~u 1 =

 et

et

et

 , ~u 2 =

 et

et

et

 , ~u 3 =

 e2t

2e2t

4e2t

 .
Then w(t) might appear to be complicated, but w(0) is obviously zero
because it has two duplicate columns. Therefore, Abel’s Wronskian test
detects dependence of ~u 1, ~u 2, ~u 3.

To illustrate Abel’s Wronskian test when it detects independence, con-
sider the column vectors

~u 1 =

 et

et

−e−t + 4e2t

 , ~u 2 =

 e−t

et

2e−t

 , ~u 3 =

 0
e2t

−2e2t

 .
At t = t0 = 0, they become the column vectors

~u 1 =

 1
1
3

 , ~u 2 =

 1
1
2

 , ~u 3 =

 0
1
−2

 .
Then w(0) = det(〈〈〈~u 1(0)|~u 2(0)|~u 3(0))〉〉〉 = 1 is nonzero, testing indepen-
dence of ~u 1, ~u 2, ~u 3.

5The trace of a square matrix is the sum of its diagonal elements. In literature,
the formula is called the Abel-Liouville formula.
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Initial value problems and the rref method. An initial value
problem is the problem of solving for ~x , given

~x ′ = A(t)~x +~f (t), ~x (t0) = ~x 0.

If a general solution is known,

~x = c1~u 1(t) + · · ·+ cn~un(t) + ~xp(t),

then the problem of finding ~x reduces to finding c1, . . . , cn in the relation

c1~u 1(t0) + · · ·+ cn~un(t0) + ~xp(t0) = ~x 0.

This is a matrix equation for the unknown constants c1, . . . , cn of the
form B~c = ~d , where

B = 〈〈〈~u 1(t0)| · · · |~un(t0)〉〉〉, ~c =

 c1
...
cn

 , ~d = ~x 0 − ~xp(t0).

The rref -method applies to find ~c . The method is to perform swap,
combination and multiply operations to C = 〈〈〈B|~d〉〉〉 until rref(C) =
〈〈〈I|~c〉〉〉.
To illustrate the method, consider the general solution

x1 = c1e
t + c2e

−t + t,
x2 = (c1 + c2)e

t + c3e
2t,

x3 = (2c2 − c1)e−t + (4c1 − 2c3)e
2t + 2t.

We shall solve for c1, c2, c3, given the initial condition x1(0) = 1, x2(0) =
0, x3(0) = −1. The above relations evaluated at t = 0 give the system

1 = c1e
0 + c2e

0 + 0,
0 = (c1 + c2)e

0 + c3e
0,

−1 = (2c2 − c1)e0 + (4c1 − 2c3)e
0 + 0.

In standard scalar form, this is the 3× 3 linear system

c1 + c2 = 1,
c1 + c2 + c3 = 0,

3c1 + 2c2 − 2c3 = −1.

The augmented matrix C, to be reduced to rref form, is given by

C =

 1 1 0 1
1 1 1 0
3 2 −2 −1

 .
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After the rref process is completed, we obtain

rref(C) =

 1 0 0 −5
0 1 0 6
0 0 1 −1

 .
From this display, we read off the answer c1 = −5, c2 = 6, c3 = −1 and
report the final answer

x1 = −5et + 6e−t + t,
x2 = et − e2t,
x3 = 17e−t − 18e2t + 2t.

Equilibria. An equilibrium point ~x 0 of a linear system ~x ′ = A(t)~x is
a constant solution, ~x (t) = ~x 0 for all t. Mostly, this makes sense when
A(t) is constant, although the definition applies to continuous systems.
For a solution ~x to be constant means ~x ′ = ~0 , hence all equilibria are
determined from the equation

A(t)~x 0 = ~0 for all t.

This is a homogeneous system of linear algebraic equations to be solved
for ~x 0. It is not allowed for the answer ~x 0 to depend on t (if it does, then
it is not an equilibrium). The theory for a constant matrix A(t) ≡ A
says that either ~x 0 = ~0 is the unique solution or else there are infinitely
many answers for ~x 0 (the nullity of A is positive).
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11.4 Matrix Exponential

The problem
d

dt
~x (t) = A~x (t), ~x (0) = ~x 0

has a unique solution, according to the Picard-Lindelöf theorem. Solve
the problem n times, when ~x 0 equals a column of the identity matrix,
and write ~w 1(t), . . . , ~wn(t) for the n solutions so obtained. Define the
matrix exponential eAt by packaging these n solutions into a matrix:

eAt ≡ 〈~w 1(t)| . . . |~wn(t)〉.

By construction, any possible solution of d
dt~x = A~x can be uniquely

expressed in terms of the matrix exponential eAt by the formula

~x(t) = eAt~x (0).

Matrix Exponential Identities

Announced here and proved below are various formulas and identities
for the matrix exponential eAt:

d

dt

(
eAt

)
= AeAt Columns satisfy ~x ′ = A~x .

e
~0 = I Where ~0 is the zero matrix.

BeAt = eAtB If AB = BA.

eAteBt = e(A+B)t If AB = BA.

eAteAs = eA(t+ s) Since At and As commute.(
eAt

)−1
= e−At Equivalently, eAte−At = I.

eAt = r1(t)P1 + · · ·+ rn(t)Pn Putzer’s spectral formula —
see page 784.

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I) A is 2× 2, λ1 6= λ2 real.

eAt = eλ1tI + teλ1t(A− λ1I) A is 2× 2, λ1 = λ2 real.

eAt = eat cos bt I +
eat sin bt

b
(A− aI) A is 2× 2, λ1 = λ2 = a+ ib,

b > 0.

eAt =
∞∑
n=0

An
tn

n!
Picard series. See page 786.

eAt = P−1eJtP Jordan form J = PAP−1.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system ~x ′ = A~x to find its
general solution. The method uses matrices P1, . . . , Pn constructed from
A and the eigenvalues λ1, . . . , λn of A, matrix multiplication, and the
solution ~r(t) of the first order n× n initial value problem

~r ′(t) =


λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0

...
0 0 0 · · · 1 λn

~r (t), ~r(0) =


1
0
...
0

 .

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 × 2 case (the one used
most often) and the n× n case.

Spectral Formula 2× 2

The general solution of the 2×2 system ~x ′ = A~x is given by the formula

~x (t) = (r1(t)P1 + r2(t)P2)~x (0),

where r1, r2, P1, P2 are defined as follows.

The eigenvalues r = λ1, λ2 are the two roots of the quadratic equation

det(A− rI) = 0.

Define 2× 2 matrices P1, P2 by the formulas

P1 = I, P2 = A− λ1I.

The functions r1(t), r2(t) are defined by the differential system{
r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0.

Proof: The Cayley-Hamilton formula (A − λ1I)(A − λ2I) = ~0 is valid for
any 2 × 2 matrix A and the two roots r = λ1, λ2 of the determinant equality
det(A− rI) = 0. The Cayley-Hamilton formula is the same as (A−λ2)P2 = ~0 ,
which implies the identity AP2 = λ2P2. Compute as follows.

~x ′(t) = (r′1(t)P1 + r′2(t)P2)~x (0)

= (λ1r1(t)P1 + r1(t)P2 + λ2r2(t)P2)~x (0)

= (r1(t)A+ λ2r2(t)P2)~x (0)

= (r1(t)A+ r2(t)AP2)~x (0)

= A (r1(t)I + r2(t)P2)~x (0)

= A~x (t).
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This proves that ~x (t) is a solution. Because Φ(t) ≡ r1(t)P1 + r2(t)P2 satisfies
Φ(0) = I, then any possible solution of ~x ′ = A~x can be represented by the
given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct
eigenvalues λ1, λ2 and ~x (0) is real. Then

r1 = eλ1t, r2 =
eλ1t − eλ2T

λ1 − λ2

and

~x (t) =

(
eλ1tI +

eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

)
~x (0).

The matrix exponential formula for real distinct eigenvalues:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I).

Real Equal Eigenvalues. Suppose A is 2 × 2 having real equal
eigenvalues λ1 = λ2 and ~x (0) is real. Then r1 = eλ1t, r2 = teλ1t and

~x (t) =
(
eλ1tI + teλ1t(A− λ1I)

)
~x (0).

The matrix exponential formula for real equal eigenvalues:

eAt = eλ1tI + teλ1t(A− λ1I).

Complex Eigenvalues. Suppose A is 2 × 2 having complex eigen-
values λ1 = a + bi with b > 0 and λ2 = a − bi. If ~x (0) is real, then a
real solution is obtained by taking the real part of the spectral formula.
This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(~x(t)) = (Re(r1(t))I +Re(r2(t)(A− λ1I)))~x (0)

=

(
Re(e(a+ib)t)I +Re(eat

sin bt

b
(A− (a+ ib)I))

)
~x (0)

=

(
eat cos bt I + eat

sin bt

b
(A− aI))

)
~x (0)

The matrix exponential formula for complex conjugate eigenvalues:

eAt = eat
(

cos bt I +
sin bt

b
(A− aI))

)
.
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How to Remember Putzer’s 2× 2 Formula. The expressions

eAt = r1(t)I + r2(t)(A− λ1I),

r1(t) = eλ1t, r2(t) =
eλ1t − eλ2t

λ1 − λ2
(1)

are enough to generate all three formulas. Fraction r2 is the d/dλ-Newton
quotient for r1. It has limit teλ1t as λ2 → λ1, therefore the formula
includes the case λ1 = λ2 by limiting. If λ1 = λ2 = a + ib with b > 0,
then the fraction r2 is already real, because it has for z = eλ1t and w = λ1
the form

r2(t) =
z − z
w − w

=
sin bt

b
.

Taking real parts of expression (1) gives the complex case formula.

Spectral Formula n× n

The general solution of ~x ′ = A~x is given by the formula

~x (t) = (r1(t)P1 + r2(t)P2 + · · ·+ rn(t)Pn)~x (0),

where r1, r2, . . . , rn, P1, P2, . . . , Pn are defined as follows.

The eigenvalues r = λ1, . . . , λn are the roots of the polynomial equation

det(A− rI) = 0.

Define n× n matrices P1, . . . , Pn by the formulas

P1 = I, Pk = Pk−1(A− λk−1I) = Πk−1
j=1(A− λjI), k = 2, . . . , n.

The functions r1(t), . . . , rn(t) are defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0,

...
r′n = λnrn + rn−1, rn(0) = 0.

Proof: The Cayley-Hamilton formula (A− λ1I) · · · (A− λnI) = ~0 is valid for
any n× n matrix A and the n roots r = λ1, . . . , λn of the determinant equality
det(A − rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies APn = λnPn; (2) The definition of Pk implies λkPk + Pk+1 = APk for
1 ≤ k ≤ n− 1. Compute as follows.

1 ~x ′(t) = (r′1(t)P1 + · · ·+ r′n(t)Pn)~x (0)

2 =

(
n∑
k=1

λkrk(t)Pk +

n∑
k=2

rk−1Pk

)
~x (0)
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3 =

(
n−1∑
k=1

λkrk(t)Pk + rn(t)λnPn +

n−1∑
k=1

rkPk+1

)
~x (0)

4 =

(
n−1∑
k=1

rk(t)(λkPk + Pk+1) + rn(t)λnPn

)
~x (0)

5 =

(
n−1∑
k=1

rk(t)APk + rn(t)APn

)
~x (0)

6 = A

(
n∑
k=1

rk(t)Pk

)
~x (0)

7 = A~x (t).

Details: 1 Differentiate the formula for ~x (t). 2 Use the differential equa-

tions for r1,. . . ,rn. 3 Split off the last term from the first sum, then re-index

the last sum. 4 Combine the two sums. 5 Use the recursion for Pk and

the Cayley-Hamilton formula (A− λnI)Pn = ~0 . 6 Factor out A on the left.

7 Apply the definition of ~x (t).

This proves that ~x (t) is a solution. Because Φ(t) ≡
∑n
k=1 rk(t)Pk satisfies

Φ(0) = I, then any possible solution of ~x ′ = A~x can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

Verify
(
eAt
)′

= AeAt. Let ~x0 denote a column of the identity matrix. Define

~x (t) = eAt~x0. Then (
eAt
)′
~x0 = ~x ′(t)

= A~x (t)
= AeAt~x0.

Because this identity holds for all columns of the identity matrix, then (eAt)′ and

AeAt have identical columns, hence we have proved the identity
(
eAt
)′

= AeAt.

Verify AB = BA implies BeAt = eAtB. Define ~w 1(t) = eAtB~w 0 and
~w 2(t) = BeAt~w 0. Calculate ~w ′1(t) = A~w 1(t) and ~w ′2(t) = BAeAt~w 0 =
ABeAt~w 0 = A~w 2(t), due to BA = AB. Because ~w 1(0) = ~w 2(0) = ~w 0, then
the uniqueness assertion of the Picard-Lindelöf theorem implies that ~w 1(t) =
~w 2(t). Because ~w 0 is any vector, then eAtB = BeAt. The proof is complete.

Verify eAteBt = e(A+B)t. Let ~x0 be a column of the identity matrix. Define
~x (t) = eAteBt~x0 and ~y (t) = e(A+B)t~x0. We must show that ~x (t) = ~y (t) for
all t. Define ~u(t) = eBt~x0. We will apply the result eAtB = BeAt, valid for
BA = AB. The details:

~x ′(t) =
(
eAt~u(t)

)′
= AeAt~u(t) + eAt~u ′(t)
= A~x (t) + eAtB~u (t)
= A~x (t) +BeAt~u (t)
= (A+B)~x (t).
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We also know that ~y ′(t) = (A+B)~y (t) and since ~x (0) = ~y (0) = ~x0, then the
Picard-Lindelöf theorem implies that ~x (t) = ~y (t) for all t. This completes the
proof.

Verify eAteAs = eA(t+s). Let t be a variable and consider s fixed. Define
~x (t) = eAteAs~x0 and ~y (t) = eA(t+s)~x0. Then ~x (0) = ~y (0) and both satisfy the
differential equation ~u ′(t) = A~u (t). By the uniqueness in the Picard-Lindelöf
theorem, ~x (t) = ~y (t), which implies eAteAs = eA(t+s). The proof is complete.

Verify eAt =
∞∑
n=0

An
tn

n!
. The idea of the proof is to apply Picard iteration.

By definition, the columns of eAt are vector solutions ~w 1(t), . . . , ~wn(t) whose
values at t = 0 are the corresponding columns of the n × n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

~yn+1(t) = ~y 0 +

∫ t

0

A~yn(r)dr, n ≥ 0.

The vector ~y 0 equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

~y 1(t) = ~y 0 +
∫ t
0
A~y 0dr

= (I +At) ~y 0,

~y 2(t) = ~y 0 +
∫ t
0
A~y 1(r)dr

= ~y 0 +
∫ t
0
A (I +At) ~y 0dr

=
(
I +At+A2t2/2

)
~y 0,

...

~yn(t) =
(
I +At+A2 t2

2 + · · ·+An t
n

n!

)
~y 0.

The Picard-Lindelöf theorem implies that for ~y 0 = column k of the identity
matrix,

lim
n→∞

~yn(t) = ~w k(t).

This being valid for each index k, then the columns of the matrix sum

N∑
m=0

Am
tm

m!

converge as N →∞ to ~w 1(t), . . . , ~wn(t). This implies the matrix identity

eAt =

∞∑
n=0

An
tn

n!
.

The proof is complete.

Computing eAt

Theorem 13 (Computing eJt for J Triangular)
If J is an upper triangular matrix, then a column ~u(t) of eJt can be com-
puted by solving the system ~u ′(t) = J~u(t), ~u(0) = ~v , where ~v is the
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corresponding column of the identity matrix. This problem can always be
solved by first-order scalar methods of growth-decay theory and the inte-
grating factor method.

Theorem 14 (Exponential of a Diagonal Matrix)
For real or complex constants λ1, . . . , λn,

ediag(λ1,...,λn)t = diag
(
eλ1t, . . . , eλnt

)
.

Theorem 15 (Block Diagonal Matrix)
If A = diag(B1, . . . , Bk) and each of B1, . . . , Bk is a square matrix, then

eAt = diag
(
eB1t, . . . , eBkt

)
.

Theorem 16 (Complex Exponential)
Given real a, b, then

e

(
a b
−b a

)
t

= eat
(

cos bt sin bt
− sin bt cos bt

)
.

Exercises 11.4

Matrix Exponential.

1. (Picard) Let A be real 2×2. Write
out the two initial value problems
which define the columns ~w 1(t),
~w 2(t) of eAt.

2. (Picard) Let A be real 3×3. Write
out the three initial value problems
which define the columns ~w 1(t),
~w 2(t), ~w 3(t) of eAt.

3. (Definition) Let A be real 2 × 2.
Show that the solution ~x (t) =
eAt~u0 satisfies ~x ′ = A~x and
~x (0) = ~u0.

4. Definition Let A be real n × n.
Show that the solution ~x (t) =
eAt~x (0) satisfies ~x ′ = A~x .

Matrix Exponential 2 × 2. Find
eAt using the formula eAt = 〈〈〈~w 1|~w 2〉〉〉
and the corresponding systems ~w ′1 =

A~w 1, ~w 1(0) =

(
1
0

)
, ~w ′2 = A~w 2,

~w 2(0) =

(
0
1

)
. In these exercises A

is triangular so that first-order meth-
ods can solve the systems.

5. A =

(
1 0
0 2

)
.

6. A =

(
−1 0

0 0

)
.

7. A =

(
1 1
0 0

)
.

8. A =

(
−1 1

0 2

)
.

Matrix Exponential Identities.

9.

10.

11.

12.

13.

14.
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11.5 The Eigenanalysis Method

The general solution ~x (t) = eAt~x (0) of the linear system

~x ′ = A~x

can be obtained entirely by eigenanalysis of the matrix A. A compu-
tationally useful case is when the n × n matrix A has n independent
eigenvectors in its list of eigenpairs

(λ1, ~v 1), (λ2, ~v 2), . . . , (λn, ~vn).

It is not required that the eigenvalues λ1, . . . , λn be distinct. The
eigenvalues can be real or complex.

The Eigenanalysis Method for a 2× 2 Matrix

Suppose that A is 2× 2 real and has eigenpairs

(λ1, ~v 1), (λ2, ~v 2),

with ~v 1, ~v 2 independent. The eigenvalues λ1, λ2 can be both real. Also,
they can be a complex conjugate pair λ1 = λ2 = a+ ib with b > 0.

It will be shown that the general solution of ~x ′ = A~x can be written as

~x (t) = c1e
λ1t~v 1 + c2e

λ2t~v 2.

The details:

~x ′ = c1(e
λ1t)′~v 1 + c2(e

λ2t)′~v 2 Differentiate the formula for ~x .

= c1e
λ1tλ1~v 1 + c2e

λ2tλ2~v 2

= c1e
λ1tA~v 1 + c2e

λ2tA~v 2 Use λ1~v 1 = A~v 1, λ2~v 2 = A~v 2.

= A
(
c1e

λ1t~v 1 + c2e
λ2t~v 2

)
Factor A left.

= A~x Definition of ~x .

Let’s rewrite the solution ~x in the vector-matrix form

~x (t) = 〈〈〈~v 1|~v 2〉〉〉
(
eλ1t 0

0 eλ2t

)(
c1
c2

)
.

Because eigenvectors ~v 1, ~v 2 are assumed independent, then 〈〈〈~v 1|~v 2〉〉〉 is
invertible and setting t = 0 in the previous display gives(

c1
c2

)
= 〈〈〈~v 1|~v 2〉〉〉−1~x (0).
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Because c1, c2 can be chosen to produce any initial condition ~x(0), then
~x (t) is the general solution of the system ~x ′ = A~x .

The general solution expressed as ~x (t) = eAt~x (0) leads to the exponen-
tial matrix relation

eAt = 〈〈〈~v 1|~v 2〉〉〉
(
eλ1t 0

0 eλ2t

)
〈〈〈~v 1|~v 2〉〉〉−1.

The formula is immediately useful when the eigenpairs are real.

Complex conjugate eigenvalues. First, eigenpair (λ2, ~v 2) is never
computed or used, because A~v 1 = λ1~v 1 implies A~v 1 = λ1~v 1, which
implies λ2 = λ1 has eigenvector ~v 2 = ~v 1.

If A is real, then eAt is real, and taking real parts across the formula for
eAt will give a real formula. Due to the unpleasantness of the complex
algebra, we will report the answer found, which is real, and then justify
it with minimal use of complex numbers.

Define for eigenpair (λ1, ~v 1) symbols a, b, P as follows:

λ1 = a+ ib, b > 0, P = 〈〈〈Re(~v 1)| Im(~v 1)〉〉〉.

Then

eAt = eatP

(
cos bt sin bt
− sin bt cos bt

)
P−1.(1)

Justification of (1). The formula is established by showing that the matrix
Φ(t) on the right satisfies Φ(0) = I and Φ′ = AΦ. Then by definition, eAt =
Φ(t). For exposition, let

R(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, Φ(t) = PR(t)P−1.

The identity Φ(0) = I verified as follows.

Φ(0) = PR(0)P−1

= Pe0
(

1 0
0 1

)
P−1

= I

Write λ1 = a + ib and ~v 1 = Re(~v 1) + i Im(~v 1). The expansion of eigenpair
relation A~v 1 = λ1~v 1 into real and imaginary parts gives the relation

A (Re(~v 1) + i Im(~v 1)) = (a+ ib) (Re(~v 1) + i Im(~v 1)) ,

which shows that

AP = P

(
a b
−b a

)
.
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Then
Φ′(t)Φ−1(t) = PR′(t)P−1PR−1(t)P−1

= PR′(t)R−1(t)P−1

= P

(
aI +

(
0 b
−b 0

))
P−1

= P

(
a b
−b a

)
P−1

= A

The proof of Φ′(t) = AΦ(t) is complete.

The formula for eAt implies that the general solution in this special case
is

~x (t) = eat〈〈〈Re(~v 1)| Im(~v 1)〉〉〉
(

cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
.

The values c1, c2 are related to the initial condition ~x (0) by the matrix
identity (

c1
c2

)
= 〈〈〈Re(~v 1)| Im(~v 1))

−1~x (0〉〉〉.

The Eigenanalysis Method for a 3× 3 Matrix

Suppose that A is 3× 3 real and has eigenpairs

(λ1, ~v 1), (λ2, ~v 2), (λ3, ~v 3),

with ~v 1, ~v 2, ~v 3 independent. The eigenvalues λ1, λ2, λ3 can be all real.
Also, there can be one real eigenvalue λ3 and a complex conjugate pair
of eigenvalues λ1 = λ2 = a+ ib with b > 0.

The general solution of ~x ′ = A~x can be written as

~x (t) = c1e
λ1t~v 1 + c2e

λ2t~v 2 + c3e
λ3t~v 3.

The details parallel the 2× 2 details; they are left as an exercise for the
reader.

The solution ~x is written in vector-matrix form

~x(t) = 〈〈〈~v 1|~v 2, ~v 3〉〉〉

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t


 c1
c2
c3

 .
Because the three eigenvectors ~v 1, ~v 2, ~v 3 are assumed independent,
then 〈〈〈~v 1|~v 2|~v 3〉〉〉 is invertible. Setting t = 0 in the previous display gives c1

c2
c2

 = 〈〈〈~v 1, ~v 2, ~v 3〉〉〉−1~x(0).
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Constants c1, c2, c3 can be chosen to produce any initial condition ~x(0),
therefore ~x(t) is the general solution of the 3×3 system ~x ′ = A~x . There
is a corresponding exponential matrix relation

eAt = 〈〈〈~v 1|~v 2, ~v 3〉〉〉

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 〈〈〈~v 1, ~v 2, ~v 3〉〉〉−1.

This formula is normally used when the eigenpairs are real. When there
is a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib, b > 0, then
as was shown in the 2 × 2 case it is possible to extract a real solution
~x from the complex formula and report a real form for the exponential
matrix:

eAt = P

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

P−1,
P = 〈〈〈Re(~v 1)| Im(~v 1), ~v 3〉〉〉.

The Eigenanalysis Method for an n× n Matrix

The general solution formula and the formula for eAt generalize easily
from the 2× 2 and 3× 3 cases to the general case of an n× n matrix.

Theorem 17 (The Eigenanalysis Method)
Let the n× n real matrix A have eigenpairs

(λ1, ~v 1), (λ2, ~v 2), . . . , (λn, ~vn),

with n independent eigenvectors ~v 1, . . . , ~vn. Then the general solution of
the linear system ~x ′ = A~x is given by

~x (t) = c1~v 1e
λ1t + c2~v 2e

λ2t + · · ·+ cn~vne
λnt.

The vector-matrix form of the general solution is

~x (t) = 〈〈〈~v 1| · · · |~vn〉〉〉diag(eλ1t, . . . , eλnt)

 c1
...
cn

 .
This form is real provided all eigenvalues are real. A real form can be
made from a complex form by following the example of a 3 × 3 matrix
A. The plan is to list all complex eigenvalues first, in pairs, λ1, λ1, . . . ,
λp, λp. Then the real eigenvalues r1, . . . , rq are listed, 2p+ q = n. Define

P = 〈〈〈Re(~v 1)| Im(~v 1)| . . . |Re(~v 2p−1)| Im(~v 2p−1)|~v 2p+1| · · · |~vn〉〉〉,
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Rλ(t) = eat
(

cos bt sin bt
− sin bt cos bt

)
, where λ+ a+ ib, b > 0.

Then the real vector-matrix form of the general solution is

~x (t) = P diag(Rλ1(t), . . . , Rλp(t), er1t, . . . , erqt)

 c1
...
cn


and

eAt = P diag(Rλ1(t), . . . , Rλp(t), er1t, . . . , erqt)P−1.

Spectral Theory Methods

The simplicity of Putzer’s spectral method for computing eAt is appre-
ciated, but we also recognize that the literature has an algorithm to
compute eAt, devoid of differential equations, which is of fundamental
importance in linear algebra. The parallel algorithm computes eAt di-
rectly from the eigenvalues λj of A and certain products of the nilpotent
matrices A− λjI. Called spectral formulas, they can be implemented
in a numerical laboratory or computer algebra system, in order to effi-
ciently compute eAt, even in the case of multiple eigenvalues.

Theorem 18 (Computing eAt for Simple Eigenvalues)
Let the n × n matrix A have n simple eigenvalues λ1, . . . , λn (possibly

complex) and define constant matrices ~Q 1, . . . , ~Qn by the formulas

~Q j = Πi 6=j
A− λiI
λj − λi

, j = 1, . . . , n.

Then
eAt = eλ1t ~Q 1 + · · ·+ eλnt ~Qn.

Theorem 19 (Computing eAt for Multiple Eigenvalues)
Let the n× n matrix A have k distinct eigenvalues λ1, . . . , λk of algebraic
multiplicities m1, . . . , mk. Let p(λ) = det(A− λI) and define polynomials
a1(λ), . . . , ak(λ) by the partial fraction identity

1

p(λ)
=

a1(λ)

(λ− λ1)m1
+ · · ·+ ak(λ)

(λ− λk)mk
.

Define constant matrices ~Q 1, . . . , ~Qk by the formulas

~Q j = aj(A)Πi 6=j(A− λiI)mi , j = 1, . . . , k.

Then

eAt =
k∑
i=1

eλit ~Q i

mi−1∑
j=0

(A− λiI)j
tj

j!
.(2)
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Proof: Let ~N i = ~Q i(A− λiI), 1 ≤ i ≤ k. We first prove

Lemma 1 (Properties)

1. ~Q1 + · · ·+ ~Qk = I,
2. ~Q i

~Q i = ~Q i,
3. ~Q i

~Q j = ~0 for i 6= j,

4. ~N i
~N j = ~0 for i 6= j,

5. ~Nmi
i = ~0 ,

6. A =
∑k
i=1(λi ~Q i + ~N i).

The proof of 1 follows from clearing fractions in the partial fraction expansion
of 1/p(λ):

1 =

k∑
i=1

ai(λ)
p(λ)

(λ− λi)mi
.

The projection property 2 follows by multiplication of identity 1 by ~Q i and
then using 2.

The proof of 3 starts by observing that ~Q i and ~Q j together contain all the fac-

tors of p(A), therefore ~Q i
~Q j = q(A)p(A) for some polynomial q. The Cayley-

Hamilton theorem p(A) = ~0 finishes the proof.

To prove 4, write ~N i
~N j = (A− λiI)(A− λjI)~Q i

~Q j and apply 3.

To prove 5, use ~Qmi
i = ~Q i (from 2) to write ~Nmi

i = (A−λiI)mi ~Q i = p(A) = ~0 .

To prove 6, multiply 1 by A and rearrange as follows:

A =
∑k
i=1A

~Q i

=
∑k
i=1 λi

~Q i + (A− λiI)~Q i

=
∑k
i=1 λi

~Q i + ~N i

To prove (2), multiply 1 by eAt and compute as follows:

eAt =
∑k
i=1

~Q ie
At

=
∑k
i=1

~Q ie
λiIt+(A−λiI)t

=
∑k
i=1

~Q ie
λite(A−λiI)t

=
∑k
i=1

~Q ie
λite

~Q i(A−λiI)t

=
∑k
i=1

~Q ie
λite

~N it

=
∑k
i=1

~Q ie
λit
∑m1−1
j=0 (A− λiI)j t

j

j!

Solving Planar Systems ~x ′(t) = A~x (t)

A 2× 2 real system ~x ′(t) = A~x(t) can be solved in terms of the roots of
the characteristic equation det(A− λI) = 0 and the real matrix A.

Theorem 20 (Planar System, Putzer’s Spectral Formula)
Consider the real planar system ~x ′(t) = A~x (t). Let λ1, λ2 be the roots of
the characteristic equation det(A−λI) = 0. The real general solution ~x (t)
is given by the formula

~x (t) = eAt~x (0)
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where the 2× 2 exponential matrix eAt is given as follows.

Real λ1 6= λ2 eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I).

Real λ1 = λ2 eAt = eλ1tI + teλ1t(A− λ1I).

Complex λ1 = λ2,
λ1 = a+ bi, b > 0

eAt = eat cos bt I +
eat sin(bt)

b
(A− aI).

Proof: The formulas are from Putzer’s algorithm, or equivalently, from the
spectral formulas, with rearranged terms. The complex case is formally the
real part of the distinct root case when λ2 = λ1. The spectral formula is the
analog of the second order equation formulas, Theorem 45 in Chapter 5.

Illustrations. Typical cases are represented by the following 2 × 2
matrices A, which correspond to roots λ1, λ2 of the characteristic equa-
tion det(A − λI) = 0 which are real distinct, real double or complex
conjugate. The solution ~x(t) = eAt~x (0) is given here in two forms, by
writing eAt using 1 a spectral formula and 2 Putzer’s spectral
formula.

λ1 = 5, λ2 = 2

A =

(
−1 3
−6 8

) Real distinct roots.

1 eAt =
e5t

3

(
−3 3
−6 6

)
+
e2t

−3

(
−6 3
−6 3

)

2 eAt = e5tI +
e2t − e5t

2− 5

(
−6 3
−6 3

)

λ1 = λ2 = 3

A =

(
2 1
−1 4

) Real double root.

1 eAt = e3t
(
I + t

(
−1 1
−1 1

))

2 eAt = e3tI + te3t
(
−1 1
−1 1

)

λ1 = λ2 = 2 + 3i

A =

(
2 3
−3 2

) Complex conjugate roots.

1 eAt = 2Re

(
e2t+3it

2(3i)

(
3i 3
−3 3i

))

2 eAt = e2t cos 3tI +
e2t sin 3t

3

(
0 3
−3 0

)

The complex example is typical for real n×n matrices A with a complex

conjugate pair of eigenvalues λ1 = λ2. Then ~Q 2 = ~Q 1. The result is



796 Systems of Differential Equations

that λ2 is not used and we write instead a simpler expression using the
college algebra equality z + z = 2Re(z):

eλ1t ~Q 1 + eλ2t ~Q 2 = 2Re
(
eλ1t ~Q 1

)
.

This observation explains why eAt is real when A is real, by pairing
complex conjugate eigenvalues in the spectral formula.
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11.6 Jordan Form and Eigenanalysis

Generalized Eigenanalysis

The main result is Jordan’s decomposition

A = PJP−1,

valid for any real or complex square matrix A. We describe here how
to compute the invertible matrix P of generalized eigenvectors and the
upper triangular matrix J , called a Jordan form of A.

Jordan block. An m×m upper triangular matrix B(λ,m) is called a
Jordan block provided all m diagonal elements are the same eigenvalue
λ and all super-diagonal elements are one:

B(λ,m) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (m×m matrix)

Jordan form. Given an n× n matrix A, a Jordan form J for A is
a block diagonal matrix

J = diag(B(λ1,m1), B(λ2,m2), . . . , B(λk,mk)),

where λ1, . . . , λk are eigenvalues of A (duplicates possible) and m1 +
· · · + mk = n. Because the eigenvalues of A are on the diagonal of J ,
then A has exactly k eigenpairs. If k < n, then A is non-diagonalizable.

The relation A = PJP−1 is called a Jordan decomposition of A.
Invertible matrix P is called the matrix of generalized eigenvectors
of A. It defines a coordinate system ~x = P~y in which the vector function
~x → A~x is transformed to the simpler vector function ~y → J~y .

If equal eigenvalues are adjacent in J , then Jordan blocks with equal
diagonal entries will be adjacent. Zeros can appear on the super-diagonal
of J , because adjacent Jordan blocks join on the super-diagonal with a
zero. A complete specification of how to build J from A appears below.

Decoding a Jordan Decomposition A = PJP−1. If J is a single
Jordan block, J = B(λ,m), then P = 〈〈〈~v 1| . . . |~vm〉〉〉 and AP = PJ means

A~v 1 = λ~v 1,
A~v 2 = λ~v 2 + ~v 1,

...
...

...
A~vm = λ~vm + ~vm−1.
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The exploded view of the relation AP = PB(λ,m) is called a Jordan
chain. The formulas can be compacted via matrix N = A− λI into the
recursion

N~v 1 = ~0 , N~v 2 = ~v 1, . . . , N~vm = ~vm−1.

The first vector ~v 1 is an eigenvector. The remaining vectors ~v 2, . . . , ~vm

are not eigenvectors, they are called generalized eigenvectors. A
similar formula can be written for each distinct eigenvalue of a matrix A.
The collection of formulas are called Jordan chain relations. A given
eigenvalue may appear multiple times in the chain relations, due to the
appearance of two or more Jordan blocks with the same eigenvalue.

Theorem 21 (Jordan Decomposition)
Every n× n matrix A has a Jordan decomposition A = PJP−1.

Proof: The result holds by default for 1× 1 matrices. Assume the result holds
for all k × k matrices, k < n. The proof proceeds by induction on n.

The induction assumes that for any k × k matrix A, there is a Jordan decom-
position A = PJP−1. Then the columns of P satisfy Jordan chain relations

A~x ji = λi~x
j
i + ~x j−1i , j > 1, A~x1

i = λi~x
1
i .

Conversely, if the Jordan chain relations are satisfied for k independent vectors
{~x ji}, then the vectors form the columns of an invertible matrix P such that
A = PJP−1 with J in Jordan form. The induction step centers upon producing
the chain relations and proving that the n vectors are independent.

Let B be n×n and λ0 an eigenvalue of B. The Jordan chain relations hold for
A = B if and only if they hold for A = B − λ0I. Without loss of generality, we
can assume 0 is an eigenvalue of B.

Because B has 0 as an eigenvalue, then p = dim(kernel(B)) > 0 and k =
dim(Image(B)) < n, with p+ k = n. If k = 0, then B = 0, which is a Jordan
form, and there is nothing to prove. Assume henceforth p and k positive. Let
S = 〈〈〈 col(B, i1)| . . . | col(B, ik)〉〉〉 denote the matrix of pivot columns i1,. . . ,ik
of B. The pivot columns are known to span Image(B). Let A be the k × k
basis representation matrix defined by the equation BS = SA, or equivalently,
B col(S, j) =

∑k
i=1 aij col(S, i). The induction hypothesis applied to A implies

there is a basis of k-vectors satisfying Jordan chain relations

A~x ji = λi~x
j
i + ~x j−1i , j > 1, A~x1

i = λi~x
1
i .

The values λi, i = 1, . . . , p, are the distinct eigenvalues of A. Apply S to these
equations to obtain for the n-vectors ~y ji = S~x ji the Jordan chain relations

B~y ji = λi~y
j
i + ~y j−1i , j > 1, B~y 1

i = λi~y
1
i .

Because S has independent columns and the k-vectors ~x ji are independent, then

the n-vectors ~y ji are independent.

The plan is to isolate the chains for eigenvalue zero, then extend these chains
by one vector. Then 1-chains will be constructed from eigenpairs for eigenvalue
zero to make n generalized eigenvectors.
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Suppose q values of i satisfy λi = 0. We allow q = 0. For simplicity, assume such
values i are i = 1, . . . , q. The key formula ~y ji = S~x ji implies ~y ji is in Image(B),
while B~y 1

i = λi~y
1
i implies ~y 1

1,. . . ,~y 1
q are in kernel(B). Each eigenvector ~y 1

i

starts a Jordan chain ending in ~y
m(i)
i . Then6 the equation B~u = ~y

m(i)
i has

an n-vector solution ~u . We label ~u = ~y
m(i)+1
i . Because λi = 0, then B~u =

λi~u + ~y
m(i)
i results in an extended Jordan chain

B~y 1
i = λi~y

1
i

B~y 2
i = λi~y

2
i + ~y 1

i
...

B~y
m(i)
i = λi~y

m(i)
i + ~y

m(i)−1
i

B~y
m(i)+1
i = λi~y

m(i)+1
i + ~y

m(i)
i

Let’s extend the independent set {~y 1
i }
q
i=1 to a basis of kernel(B) by adding

s = n − k − q additional independent vectors ~v 1, . . . , ~v s. This basis consists
of eigenvectors of B for eigenvalue 0. Then the set of n vectors ~v r, ~y

j
i for

1 ≤ r ≤ s, 1 ≤ i ≤ p, 1 ≤ j ≤ m(i) + 1 consists of eigenvectors of B and vectors
that satisfy Jordan chain relations. These vectors are columns of a matrix P
that satisfies BP = PJ where J is a Jordan form.

To prove P invertible, assume a linear combination of the columns of P is zero:

p∑
i=q+1

m(i)∑
j=1

bji~y
j
i +

q∑
i=1

m(i)+1∑
j=1

bji~y
j
i +

s∑
i=1

ci~v i = ~0 .

Apply B to this equation. Because B~w = ~0 for any ~w in kernel(B), then

p∑
i=q+1

m(i)∑
j=1

bjiB~y
j
i +

q∑
i=1

m(i)+1∑
j=2

bjiB~y
j
i = ~0 .

The Jordan chain relations imply that the k vectors B~y ji in the linear com-

bination consist of λi~y
j
i + ~y j−1i , λi~y

1
i , i = q + 1, . . . , p, j = 2, . . . ,m(i), plus

the vectors ~y ji , 1 ≤ i ≤ q, 1 ≤ j ≤ m(i). Independence of the original k vec-

tors {~y ji} plus λi 6= 0 for i > q implies this new set is independent. Then all
coefficients in the linear combination are zero.

The first linear combination then reduces to
∑q
i=1 b

1
i ~y

1
i +

∑s
i=1 ci~v i = ~0 . In-

dependence of the constructed basis for kernel(B) implies b1i = 0 for 1 ≤ i ≤ q
and ci = 0 for 1 ≤ i ≤ s. Therefore, the columns of P are independent. The
induction is complete.

Geometric and algebraic multiplicity. The geometric multi-
plicity is defined by GeoMult(λ) = dim(kernel(A− λI)), which is the
number of basis vectors in a solution to (A−λI)~x = ~0 , or, equivalently,
the number of free variables. The algebraic multiplicity is the integer
k = AlgMult(λ) such that (r−λ)k divides the characteristic polynomial
det(A− λI), but larger powers do not.

6The n-vector ~u is constructed by setting ~u = ~0 , then copy components of k-vector
~x

m(i)
i into pivot locations: row(~u , ij) = row(~x

m(i)
i , j), j = 1, . . . , k.
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Theorem 22 (Algebraic and Geometric Multiplicity)
Let A be a square real or complex matrix. Then

1 ≤ GeoMult(λ) ≤ AlgMult(λ).(1)

In addition, there are the following relationships between the Jordan form J
and algebraic and geometric multiplicities.

GeoMult(λ) Equals the number of Jordan blocks in J with eigen-
value λ,

AlgMult(λ) Equals the number of times λ is repeated along the
diagonal of J .

Proof: Let d = GeoMult(λ0). Construct a basis v1, . . . , vn of Rn such that
v1, . . . , vd is a basis for kernel(A − λ0I). Define S = 〈〈〈v1| . . . |vn〉〉〉 and B =

S−1AS. The first d columns of AS are λ0v1, . . . , λ0vd. Then B =

(
λ0I C
0 D

)
for some matrices C and D. Cofactor expansion implies some polynomial g
satisfies

det(A− λI) = det(S(B − λI)S−1) = det(B − λI) = (λ− λ0)dg(λ)

and therefore d ≤ AlgMult(λ0). Other details of proof are left to the reader.

Chains of generalized eigenvectors. Given an eigenvalue λ of
the matrix A, the topic of generalized eigenanalysis determines a Jordan
block B(λ,m) in J by finding an m-chain of generalized eigenvectors
~v 1, . . . , ~vm, which appear as columns of P in the relation A = PJP−1.
The very first vector ~v 1 of the chain is an eigenvector, (A− λI)~v 1 = ~0 .
The others ~v 2, . . . , ~v k are not eigenvectors but satisfy

(A− λI)~v 2 = ~v 1, . . . , (A− λI)~vm = ~vm−1.

Implied by the term m-chain is insolvability of (A − λI)~x = ~vm. The
chain size m is subject to the inequality 1 ≤ m ≤ AlgMult(λ).

The Jordan form J may contain several Jordan blocks for one eigenvalue
λ. To illustrate, if J has only one eigenvalue λ and AlgMult(λ) = 3,
then J might be constructed as follows:

J = diag(B(λ, 1), B(λ, 1), B(λ, 1)) =

 λ 0 0
0 λ 0
0 0 λ

 ,
J = diag(B(λ, 1), B(λ, 2)) =

 λ 0 0
0 λ 1
0 0 λ

 ,
J = B(λ, 3) =

 λ 1 0
0 λ 1
0 0 λ

 .
The three generalized eigenvectors for this example correspond to
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J =

 λ 0 0
0 λ 0
0 0 λ

 ↔ Three 1-chains,

J =

 λ 0 0
0 λ 1
0 0 λ

 ↔ One 1-chain and one 2-chain,

J =

 λ 1 0
0 λ 1
0 0 λ

 ↔ One 3-chain.

Computing m-chains. Let us fix the discussion to an eigenvalue λ
of A. Define N = A− λI and p = AlgMult(λ).

To compute an m-chain, start with an eigenvector ~v 1 and solve recur-
sively by rref methods N~v j+1 = ~v j until there fails to be a solution.
This must seemingly be done for all possible choices of ~v 1! The search for
m-chains terminates when p independent generalized eigenvectors have
been calculated.

If A has an essentially unique eigenpair (λ, ~v 1), then this process termi-
nates immediately with an m-chain where m = p. The chain produces
one Jordan block B(λ,m) and the generalized eigenvectors ~v 1, . . . , ~vm

are recorded into the matrix P .

If ~u 1, ~u 2 form a basis for the eigenvectors of A corresponding to λ, then
the problem N~x = ~0 has 2 free variables. Therefore, we seek to find an
m1-chain and an m2-chain such that m1 +m2 = p, corresponding to two
Jordan blocks B(λ,m1) and B(λ,m2).

To understand the logic applied here, the reader should verify that for
N = diag(B(0,m1), B(0,m2), . . . , B(0,mk)) the problem N~x = ~0 has
k free variables, because N is already in rref form. These remarks
imply that a k-dimensional basis of eigenvectors of A for eigenvalue λ
causes a search for mi-chains, 1 ≤ i ≤ k, such that m1 + · · · + mk = p,
corresponding to k Jordan blocks B(λ,m1), . . . , B(λ,mk).

A common naive approach for computing generalized eigenvectors can
be illustrated by letting

A =

 1 1 1
0 1 0
0 0 1

 , ~u 1 =

 1
−1

1

 , ~u 2 =

 0
1
−1

 .
Matrix A has one eigenvalue λ = 1 and two eigenpairs (1, ~u 1), (1, ~u 2).
Starting a chain calculation with ~v 1 equal to either ~u 1 or ~u 2 gives a
1-chain. This naive approach leads to only two independent generalized
eigenvectors. However, the calculation must proceed until three inde-
pendent generalized eigenvectors have been computed. To resolve the
trouble, keep a 1-chain, say the one generated by ~u 1, and start a new
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chain calculation using ~v 1 = a1~u 1 + a2~u 2. Adjust the values of a1, a2
until a 2-chain has been computed:

〈〈〈A− λI|~v 1〉〉〉 =

 0 1 1 a1
0 0 0 −a1 + a2
0 0 0 a1 − a2

 ≈
 0 1 1 a1

0 0 0 0
0 0 0 0

 ,
provided a1 − a2 = 0. Choose a1 = a2 = 1 to make ~v 1 = ~u 1 + ~u 2 6= ~0

and solve for ~v 2 =
(

0, 1, 0
)
. Then ~u 1 is a 1-chain and ~v 1, ~v 2 is a

2-chain. The generalized eigenvectors ~u 1, ~v 1, ~v 2 are independent and
form the columns of P while J = diag(B(λ, 1), B(λ, 2)) (recall λ = 1).
We justify A = PJP−1 by testing AP = PJ , using the formulas

J =

 λ 0 0
0 λ 1
0 0 λ

 , P =

 1 1 0
−1 0 1

1 0 0

 .

Jordan Decomposition using maple

Displayed here is maple code which applied to the matrix

A =

 4 −2 5
−2 4 −3

0 0 2


produces the Jordan decomposition

A = PJP−1 =
1

4

 1 4 −7
−1 4 1

0 0 4


 6 0 0

0 2 1
0 0 2

 1

4

 8 −8 16
2 2 3
0 0 4

 .
A := Matrix([[4, -2, 5], [-2, 4, -3], [0, 0, 2]]);

factor(LinearAlgebra[CharacteristicPolynomial](A,lambda));

# Answer == (lambda-6)*(lambda-2)^2

J,P:=LinearAlgebra[JordanForm](A,output=[’J’,’Q’]);

zero:=A.P-P.J; # zero matrix expected

Number of Jordan Blocks

In calculating generalized eigenvectors of A for eigenvalue λ, it is pos-
sible to decide in advance how many Jordan chains of size k should be
computed. A practical consequence is to organize the computation for
certain chain sizes.

Theorem 23 (Number of Jordan Blocks)
Given eigenvalue λ of A, define N = A − λI, k(j) = dim(kernel(N j)).
Let p be the least integer such that Np = Np+1. Then the Jordan form of
A has 2k(j − 1)− k(j − 2)− k(j) Jordan blocks B(λ, j − 1), j = 3, . . . , p.



11.6 Jordan Form and Eigenanalysis 803

The proof of the theorem is in the exercises, where more detail appears
for p = 1 and p = 2. Complete results are in the maple code below.

An Illustration. This example is a 5×5 matrix A with one eigenvalue
λ = 2 of multiplicity 5. Let s(j) = number of j × j Jordan blocks.

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0
−1 1 0 2 1
−3 3 0 −2 3

 , N = A−2I =


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0
−1 1 0 0 1
−3 3 0 −2 1

 .

Then N3 = N4 = N5 = 0 implies k(3) = k(4) = k(5) = 5. Further,
k(2) = 4, k(1) = 2. Then s(5) = s(4) = 0, s(3) = s(2) = 1, s(1) = 0,
which implies one block of each size 2 and 3.

Some maple code automates the investigation:

with(LinearAlgebra):

A := Matrix([

[ 3, -1, 1, 0, 0],[ 2, 0, 1, 1, 0],

[ 1, -1, 2, 1, 0],[-1, 1, 0, 2, 1],

[-3, 3, 0, -2, 3] ]);

lambda:=2;

n:=RowDimension(A);N:=A-lambda*IdentityMatrix(n);

for j from 1 to n do

k[j]:=n-Rank(N^j); od:

for p from n to 2 by -1 do

if(k[p]<>k[p-1])then break; fi: od;

txt:=(j,x)->printf(‘if‘(x=1,

cat("B(lambda,",j,") occurs 1 time\n"),

cat("B(lambda,",j,") occurs ",x," times\n"))):

printf("lambda=%d, nilpotency=%d\n",lambda,p);

if(p=1) then txt(1,k[1]); else

txt(p,k[p]-k[p-1]);

for j from p to 3 by -1 do

txt(j-1,2*k[j-1]-k[j-2]-k[j]): od:

txt(1,2*k[1]-k[2]);

fi:

#lambda=2, nilpotency=3

#B(lambda,3) occurs 1 time

#B(lambda,2) occurs 1 time

#B(lambda,1) occurs 0 times

J,P:=JordanForm(A,output=[’J’,’Q’])}:

# Answer check for the maple code
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J =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

 , P =
1

2


0 1 2 −1 0
−4 2 2 −2 2
−4 1 1 −1 1
−4 −3 1 −1 1

4 −5 −3 1 −3



Numerical Instability

The matrix A =

(
1 1
ε 1

)
has two possible Jordan forms

J(ε) =



(
1 1
0 1

)
ε = 0,

(
1 +
√
ε 0
0 1−

√
ε

)
ε > 0.

When ε ≈ 0, then numerical algorithms become unstable, unable to lock
onto the correct Jordan form. Briefly, limε→0 J(ε) 6= J(0).

The Real Jordan Form of A

Given a real matrix A, generalized eigenanalysis seeks to find a real
invertible matrix P and a real upper triangular block matrix R such
that A = PRP−1.
If λ is a real eigenvalue of A, then a real Jordan block is a matrix

B = diag(λ, . . . , λ) +N, N =


0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
0 0 0 · · · 0

 .

If λ = a + ib is a complex eigenvalue of A, then symbols λ, 1 and 0 are

replaced respectively by 2×2 real matrices Λ =

(
a b
−b a

)
, I = diag(1, 1)

andO = diag(0, 0). The corresponding 2m×2m real Jordan block matrix
is given by the formula

B = diag(Λ, . . . ,Λ) +N , N =


O I O · · · O O
...

...
...

...
...

...
O O O · · · O I
O O O · · · O O

 .
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Direct Sum Decomposition

The generalized eigenspace of eigenvalue λ of an n×n matrix A is the
subspace kernel((A − λI)p) where p = AlgMult(λ). We state without
proof the main result for generalized eigenspace bases, because details
appear in the exercises. A proof is included for the direct sum decompo-
sition, even though Putzer’s spectral theory independently produces the
same decomposition.

Theorem 24 (Generalized Eigenspace Basis)
The subspace kernel((A − λI)k), k = AlgMult(λ) has a k-dimensional
basis whose vectors are the columns of P corresponding to blocks B(λ, j)
of J , in Jordan decomposition A = PJP−1.

Theorem 25 (Direct Sum Decomposition)
Given n×nmatrixA and distinct eigenvalues λ1, . . . , λk, n1 = AlgMult(λi),
. . . , nk = AlgMult(λi), then A induces a direct sum decomposition

Cn = kernel((A− λ1I)n1 ⊕ · · · ⊕ kernel((A− λkI)nk .

This equation means that each complex vector ~x in Cn can be uniquely
written as

~x = ~x 1 + · · ·+ ~xk

where each ~x i belongs to kernel ((A− λi)ni), i = 1, . . . , k.

Proof: The previous theorem implies there is a basis of dimension ni for Ei ≡
kernel((A− λiI)ni), i = 1, . . . , k. Because n1 + · · ·+ nk = n, then there are n
vectors in the union of these bases. The independence test for these n vectors
amounts to showing that ~x1 + · · ·+ ~xk = ~0 with ~x i in Ei, i = 1, . . . , k, implies
all ~x i = ~0 . This will be true provided Ei ∩ Ej = {~0} for i 6= j.

Let’s assume a Jordan decomposition A = PJP−1. If ~x is common to both Ei
and Ej , then basis expansion of ~x in both subspaces implies a linear combina-
tion of the columns of P is zero, which by independence of the columns of P
implies ~x = ~0 .

The proof is complete.

Computing Exponential Matrices

Discussed here are methods for finding a real exponential matrix eAt

when A is real. Two formulas are given, one for a real eigenvalue and
one for a complex eigenvalue. These formulas supplement the spectral
formulas given earlier in the text.
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Nilpotent matrices. A matrix N which satisfies Np = 0 for some
integer p is called nilpotent. The least integer p for which Np = 0 is
called the nilpotency of N . A nilpotent matrix N has a finite exponen-
tial series:

eNt = I +Nt+N2 t
2

2!
+ · · ·+Np−1 tp−1

(p− 1)!
.

If N = B(λ, p)− λI, then the finite sum has a splendidly simple expres-
sion. Due to eλt+Nt = eλteNt, this proves the following result.

Theorem 26 (Exponential of a Jordan Block Matrix)
If λ is real and

B =


λ 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (p× p matrix)

then

eBt = eλt


1 t t2

2 · · · tp−2

(p−2)!
tp−1

(p−1)!
...

...
...

...
...

...
0 0 0 · · · 1 t
0 0 0 · · · 0 1

 .
The equality also holds if λ is a complex number, in which case both sides
of the equation are complex.

Real Exponentials for Complex λ. A Jordan decomposition
A = PJP−1, in which A has only real eigenvalues, has real general-
ized eigenvectors appearing as columns in the matrix P, in the natural
order given in J . When λ = a + ib is complex, b > 0, then the real
and imaginary parts of each generalized eigenvector are entered pairwise
into P; the conjugate eigenvalue λ = a − ib is skipped. The complex
entry along the diagonal of J is changed into a 2 × 2 matrix under the
correspondence

a+ ib↔
(

a b
−b a

)
.

The result is a real matrix P and a real block upper triangular matrix J
which satisfy A = PJP−1.

Theorem 27 (Real Block Diagonal Matrix, Eigenvalue a+ ib)
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Let Λ =

(
a b
−b a

)
, I = diag(1, 1) and O = diag(0, 0). Consider a real

Jordan block matrix of dimension 2m× 2m given by the formula

B =


Λ I O · · · O O
...

...
...

...
...

...
O O O · · · Λ I
O O O · · · O Λ

 .

If R =

(
cos bt sin bt
− sin bt cos bt

)
, then

eBt = eat


R tR t2

2R · · · tm−2

(m−2)!R
tm−1

(m−1)!R
...

...
...

...
...

...
O O O · · · R tR
O O O · · · O R

 .

Solving ~x ′ = A~x. The solution ~x (t) = eAt~x (0) must be real if A is
real. The real solution can be expressed as ~x (t) = P~y (t) where ~y ′(t) =
R~y (t) and R is a real Jordan form of A, containing real Jordan blocks
B1, . . . , Bk down its diagonal. Theorems above provide explicit formulas
for the block matrices eBit in the relation

eRt = diag
(
eB1t, . . . , eBkt

)
.

The resulting formula

~x (t) = PeRtP−1~x (0)

contains only real numbers, real exponentials, plus sine and cosine terms,
which are possibly multiplied by polynomials in t.
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Exercises 11.6

Jordan block. Write out explicitly.

1.

2.

3.

4.

Jordan form. Which are Jordan
forms and which are not? Explain.

5.

6.

7.

8.

Decoding A = PJP−1. Decode
A = PJP−1 in each case, displaying
explicitly the Jordan chain relations.

9.

10.

11.

12.

Geometric multiplicity. Deter-
mine the geometric multiplicity
GeoMult(λ).

13.

14.

15.

16.

Algebraic multiplicity. Determine
the algebraic multiplicity AlgMult(λ).

17.

18.

19.

20.

Generalized eigenvectors. Find all
generalized eigenvectors and represent
A = PJP−1.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Computing m-chains. Find the Jor-
dan chains for the given eigenvalue.

33.

34.

35.

36.

37.

38.

39.

40.

Jordan Decomposition. Use maple

to find the Jordan decomposition.

41.

42.

43.
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44.

45.

46.

47.

48.

Number of Jordan Blocks. Outlined
here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to
kernel(N j)

• `(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

49. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).

50. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕Lj .

Then k(j) = k(j − 1) + `(j).

51. Given N j~v = ~0 , N j−1~v 6= ~0 ,
define ~v i = N j−i~v , i = 1, . . . , j.
Show that these are independent
vectors satisfying Jordan chain re-
lations N~v 1 = ~0 , N~v i+i = ~v i.

52. A block B(λ, p) corresponds to
a Jordan chain ~v 1, . . . , ~v p con-
structed from the Jordan decom-
position. Use N j−1~v j = ~v 1

and kernel(Np) = kernel(Np+1)
to show that the number of such
blocks B(λ, p) is `(p). Then for
p > 1, s(p) = k(p)− k(p− 1).

53. Show that `(j − 1) − `(j) is the
number of blocks B(λ, j) for 2 <
j < p. Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).

54. Test the formulas above on the
special matrices

A = diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A = diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A = diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A = diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Generalized Eigenspace Basis.

Let A be n× n with distinct eigenval-
ues λi, ni = AlgMult(λi) and Ei =
kernel((A− λiI)ni), i = 1, . . . , k. As-
sume a Jordan decomposition A =
PJP−1.

55. Let Jordan blockB(λ, j) appear in
J . Prove that a Jordan chain cor-
responding to this block is a set of
j independent columns of P .

56. Let Bλ be the union of all
columns of P originating from Jor-
dan chains associated with Jordan
blocks B(λ, j). Prove that Bλ is an
independent set.

57. Verify that Bλ has AlgMult(λ) ba-
sis elements.

58. Prove that Ei = span (Bλi
) and

dim(Ei) = ni, i = 1, . . . , k.

Numerical Instability. Show directly
that limε→0 J(ε) 6= J(0).

59.

60.

61.

62.

Direct Sum Decomposition. Dis-
play the direct sum decomposition.

63.

64.
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65.

66.

67.

68.

69.

70.

Exponential Matrices. Compute the
exponential matrix on paper and then
check the answer using maple.

71.

72.

73.

74.

75.

76.

77.

78.

Nilpotent matrices. Find the nilpo-
tency of N .

79.

80.

81.

82.

Real Exponentials. Compute the
real exponential eAt on paper. Check
the answer in maple.

83.

84.

85.

86.

Real Jordan Form. Find the real Jor-
dan form.

87.

88.

89.

90.

Solving ~x ′ = A~x . Solve the differ-
ential equation.

91.

92.

93.

94.
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11.7 Nonhomogeneous Linear Systems

Variation of Parameters

The method of variation of parameters is a general method for
solving a linear nonhomogeneous system

~x ′ = A~x + ~F(t).

Historically, it was a trial solution method, whereby the nonhomogeneous
system is solved using a trial solution of the form

~x (t) = eAt ~x 0(t).

In this formula, ~x 0(t) is a vector function to be determined. The method
is imagined to originate by varying ~x 0 in the general solution ~x(t) =
eAt ~x 0 of the linear homogenous system ~x ′ = A~x . Hence was coined the
names variation of parameters and variation of constants.

Modern use of variation of parameters is through a formula, memorized
for routine use.

Theorem 28 (Variation of Parameters for Systems)
Let A be a constant n × n matrix and ~F (t) a continuous function near
t = t0. The unique solution ~x (t) of the matrix initial value problem

~x ′(t) = A~x(t) + ~F (t), ~x (t0) = ~x 0,

is given by the variation of parameters formula

~x (t) = eAt~x 0 + eAt
∫ t

t0
e−rA~F (r)dr.(1)

Proof of (1). Define

~u (t) = ~x0 +

∫ t

t0

e−rA~F(r)dr.

To show (1) holds, we must verify ~x (t) = eAt~u (t). First, the function ~u(t) is

differentiable with continuous derivative e−tA~F (t), by the fundamental theorem
of calculus applied to each of its components. The product rule of calculus
applies to give

~x ′(t) =
(
eAt
)′
~u (t) + eAt~u ′(t)

= AeAt~u (t) + eAte−At~F(t)

= A~x (t) + ~F(t).

Therefore, ~x (t) satisfies the differential equation ~x ′ = A~x + ~F(t). Because
~u (t0) = ~x0, then ~x (t0) = ~x0, which shows the initial condition is also satisfied.
The proof is complete.
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Undetermined Coefficients

The trial solution method known as the method of undetermined coef-
ficients can be applied to vector-matrix systems ~x ′ = A~x + ~F (t) when
the components of ~F are sums of terms of the form

(polynomial in t)eat(cos(bt) or sin(bt)).

Such terms are known as Euler solution atoms. It is usually efficient
to write ~F in terms of the columns ~e 1, . . . , ~en of the n × n identity
matrix I, as the combination

~F (t) =
n∑
j=1

Fj(t)~e j .

Then

~x(t) =
n∑
j=1

~x j(t),

where ~x j(t) is a particular solution of the simpler equation

~x ′(t) = A~x(t) + f(t)~c , f = Fj , ~c = ~e j .

An initial trial solution ~x(t) for ~x ′(t) = A~x(t)+f(t)~c can be determined
from the following initial trial solution rule:

Assume f(t) is a sum of Euler atoms. Identify independent
functions whose linear combinations give all derivatives of
f(t). Let the initial trial solution be a linear combination of
these functions with undetermined vector coefficients {~c j}.

In the well-known scalar case, the trial solution must be modified if its
terms contain any portion of the general solution to the homogeneous
equation. In the vector case, if f(t) is a polynomial, then the correc-
tion rule for the initial trial solution is avoided by assuming the matrix
A is invertible. This assumption means that r = 0 is not a root of
det(A − rI) = 0, which prevents the homogenous solution from having
any polynomial terms.

The initial vector trial solution is substituted into the differential equa-
tion to find the undetermined coefficients {~c j}, hence finding a particular
solution.

Theorem 29 (Polynomial solutions)
Let f(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n× n
constant invertible matrix. Then ~u ′ = A~u +f(t)~c has a polynomial solution

~u(t) =
∑k
j=0~c j

tj

j! of degree k with vector coefficients {~c j} given by the
relations

~c j = −
k∑
i=j

piA
j−i−1~c , 0 ≤ j ≤ k.
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Theorem 30 (Polynomial × exponential solutions)
Let g(t) =

∑k
j=0 pj

tj

j! be a polynomial of degree k. Assume A is an n × n
constant matrix and B = A − aI is invertible. Then ~u ′ = A~u + eatg(t)~c

has a polynomial-exponential solution ~u (t) = eat
∑k
j=0~c j

tj

j! with vector
coefficients {~c j} given by the relations

~c j = −
k∑
i=j

piB
j−i−1~c , 0 ≤ j ≤ k.

Proof of Theorem 29. Substitute ~u (t) =
∑k
j=0~c j

tj

j! into the differential
equation, then

k−1∑
j=0

~c j+1
tj

j!
= A

k∑
j=0

~c j
tj

j!
+

k∑
j=0

pj
tj

j!
~c .

Then terms on the right for j = k must add to zero and the others match the
left side coefficients of tj/j!, giving the relations

A~ck + pk~c = ~0 , ~c j+1 = A~c j + pj~c .

Solving these relations recursively gives the formulas

~ck = −pkA−1~c ,
~ck−1 = −

(
pk−1A

−1 + pkA
−2)~c ,

...
~c0 = −

(
p0A

−1 + · · ·+ pkA
−k−1)~c .

The relations above can be summarized by the formula

~c j = −
k∑
i=j

piA
j−i−1~c , 0 ≤ j ≤ k.

The calculation shows that if ~u(t) =
∑k
j=0~c j

tj

j! and ~c j is given by the last

formula, then ~u(t) substituted into the differential equation gives matching
LHS and RHS. The proof is complete.

Proof of Theorem 30. Let ~u (t) = eat~v (t). Then ~u ′ = A~u +eatg(t)~c implies
~v ′ = (A− aI)~v + g(t)~c . Apply Theorem 29 to ~v ′ = B~v + g(t)~c . The proof is
complete.
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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)

m1 m3

k2 k3 k4k1

m2

Figure 22. Three masses
connected by springs. The masses
slide on a frictionless surface.

In vector-matrix form, this system is a second order system

M~x ′′(t) = K~x (t)

where the displacement ~x , mass matrix M and stiffness matrix K
are defined by the formulas

~x =

x1x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .
Because M is invertible, the system can always be written as

~x ′′ = A~x , A = M−1K.

Converting ~x ′′ = A~x to ~u ′ = C~u

Given a second order n× n system ~x ′′ = A~x , define the variable ~u and
the 2n× 2n block matrix C as follows.

~u =

(
~x
~x ′

)
, C =

(
0 I

A 0

)
.(2)

Then each solution ~x of the second order system ~x ′′ = A~x produces a
corresponding solution ~u of the first order system ~u ′ = C~u . Similarly,
each solution ~u of ~u ′ = C~u gives a solution ~x of ~x ′′ = A~x by the
formula ~x = diag(I, 0)~u .

Euler’s Substitution ~x = eλt~v

The fundamental substitution of L. Euler applies to vector-matrix dif-
ferential systems. In particular, for ~x ′′ = A~x , the equation ~x = eλt~v
produces the characteristic equation

det(A− λ2I) = 0,
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and the eigenpair equation

~v = λ2~v , ~v 6= ~0 .

This eigenpair equation means that (λ2, ~v ) is an eigenpair of the matrix
A.

Negative eigenvalues of A produce complex conjugate values for λ.
For instance, λ2 = −4 implies λ = ±2i, and then, even though vector ~v
has real components, the solution ~x (t) = eλt~v is a vector with complex
entries: ~x(t) = e2it~v = cos(2t)~v + i sin(2t)~v .

Details. Compute ~x ′ = d
dt e

λt~v = λeλt~v = λ~x . Then ~x ′′ = λ2 ~x . If
~x = eλt~v is a nonzero solution of ~x ′′ = A~x , then λ2~x = A~x holds,
which is equivalent to λ2~v = A~v . Then (λ2, ~v ) is an eigenpair of A.
Conversely, if (λ2, ~v ) is an eigenpair of A, then the steps reverse to
obtain λ2~x = A~x , which means that ~x = eλt~v is a nonzero solution of
~x ′′ = A~x .

By linear algebra, the equation A~v = λ2~v has a solution ~v 6= ~0 if
and only if the homogeneous problem (A − λ2I)~v = ~0 has infinitely
many solutions. Cramer’s Rule implies this event happens exactly when
det(A− λ2I) = 0.

Characteristic Equation for ~x ′′ = A~x

The characteristic equation for the n× n second order system ~x ′′ = A~x
will be derived anew from the corresponding 2n× 2n first order system
~u ′ = C~u . We will prove the following identity.

Theorem 31 (Characteristic Equation)
Let ~x ′′ = A~x be given with n× n constant matrix A. Let ~u ′ = C~u be its
corresponding first order system, where

~u =

(
~x
~x ′

)
, C =

(
0 I

A 0

)
.

Then

det(C − λI) = (−1)n det(A− λ2I).(3)

Proof: The method of proof is to verify the product formula(
−λI I
A −λI

)(
I 0
λI I

)
=

(
0 I

A− λ2I −λI

)
.

Then the determinant product formula applies to give

det(C − λI) det

(
I 0
λI I

)
= det

(
0 I

A− λ2I −λI

)
.(4)
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Cofactor expansion is applied to give the two identities

det

(
I 0
λI I

)
= 1, det

(
0 I

A− λ2I −λI

)
= (−1)n det(A− λ2I).

Then (4) implies (3). The proof is complete.

Solving ~u ′ = C~u and ~x ′′ = A~x

Consider the n× n second order system ~x ′′ = A~x and its corresponding
2n× 2n first order system ~u ′ = C~u , where

C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.(5)

Theorem 32 (Eigenanalysis of A and C)
Let A be a given n×n constant matrix and define the corresponding 2n×2n
system by

~u ′ = C~u , C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.

Then

(C − λI)

(
~w
~z

)
= ~0 if and only if

{
A~w = λ2~w ,
~z = λ~w .

(6)

Proof: The result is obtained by block multiplication, because

C − λI =

(
−λI I
A −λI

)
.

Theorem 33 (General Solutions of ~u ′ = C~u and ~x ′′ = A~x)
Let A be a given n×n constant matrix and define the corresponding 2n×2n
system by

~u ′ = C~u , C =

(
0 I

A 0

)
, ~u =

(
~x
~x ′

)
.

Assume C has eigenpairs {(λj , ~y j)}2nj=1 and ~y 1, . . . , ~y 2n are independent.
Let I denote the n×n identity and define ~w j = diag(I, 0)~y j , j = 1, . . . , 2n.
Then ~u ′ = C~u and ~x ′′ = A~x have general solutions

~u(t) = c1e
λ1t~y 1 + · · ·+ c2ne

λ2nt~y 2n (2n× 1),
~x (t) = c1e

λ1t~w 1 + · · ·+ c2ne
λ2nt~w 2n (n× 1).
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Proof: Let ~x j(t) = eλjt~w j , j = 1, . . . , 2n. Then ~x j is a solution of ~x ′′ = A~x ,
because ~x ′′j (t) = eλjt(λj)

2~w j = A~x j(t), by Theorem 32. To be verified is the

independence of the solutions {~x j}2nj=1. Let ~z j = λj ~w j and apply Theorem 32

to write ~y j =

(
~w j

~z j

)
, A~w j = λ2j ~w j . Suppose constants a1, . . . , a2n are given

such that
∑2n
j=1 ak~x j = 0. Differentiate this relation to give

∑2n
j=1 ake

λjt~z j = 0

for all t. Set t = 0 in the last summation and combine to obtain
∑2n
j=1 ak~y j = 0.

Independence of ~y 1, . . . , ~y 2n implies that a1 = · · · = a2n = 0. The proof is
complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values µ of A are negative or zero, then, for some ω ≥ 0, eigenvalue µ
is related to an eigenvalue λ of C by the relation µ = −ω2 = λ2. Then
λ = ±ωi and ω =

√
|µ|. Consider an eigenpair (−ω2, ~v ) of the real n×n

matrix A with ω ≥ 0 and let

u(t) =

{
c1 cosωt+ c2 sinωt ω > 0,
c1 + c2t ω = 0.

Then u′′(t) = −ω2u(t) (both sides are zero for ω = 0). It follows
that ~x(t) = u(t)~v satisfies ~x ′′(t) = −ω2~x (t) and A~x (t) = u(t)A~v =
−ω2~x(t). Therefore, ~x (t) = u(t)~v satisfies ~x ′′(t) = A~x (t).

Theorem 34 (Eigenanalysis Solution of ~x ′′ = A~x)
Let the n × n real matrix A have eigenpairs {(µj , ~v j)}nj=1. Assume µj =
−ω2

j with ωj ≥ 0, j = 1, . . . , n. Assume that ~v 1, . . . , ~vn are linearly
independent. Then the general solution of ~x ′′(t) = A~x (t) is given in terms
of 2n arbitrary constants a1, . . . , an, b1, . . . , bn by the formula

~x (t) =
n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
~v j(7)

This expression uses the limit convention
sinωt

ω

∣∣∣∣
ω=0

= t.

Proof: The text preceding the theorem and superposition establish that ~x (t) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial condition
~x (0) = ~x0, ~x ′(0) = ~y 0. Define the constants uniquely by the relations

~x0 =
∑n
j=1 aj~v j ,

~y 0 =
∑n
j=1 bj~v j ,

which is possible by the assumed independence of the vectors {~v j}nj=1. Then

equation (7) implies ~x (0) =
∑n
j=1 aj~v j = ~x0 and ~x ′(0) =

∑n
j=1 bj~v j = ~y 0.

The proof is complete.
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11.9 Numerical Methods for Systems

An initial value problem for a system of two differential equations is
given by the equations

x′(t) = f(t, x(t), y(t)),
y′(t) = g(t, x(t), y(t)),
x(t0) = x0,
y(t0) = y0.

(1)

A numerical method for (1) is an algorithm that computes an approx-
imate dot table with first line t0, x0, y0. Generally, the dot table has
equally spaced t-values, two consecutive t-values differing by a constant
value h 6= 0, called the step size. To illustrate, if t0 = 2, x0 = 5,
y0 = 100, then a typical dot table for step size h = 0.1 might look like

t x y

2.0 5.00 100.00
2.1 5.57 103.07
2.2 5.62 104.10
2.3 5.77 102.15
2.4 5.82 101.88
2.5 5.96 100.55

Graphics. The dot table represents the data needed to plot a solution
curve to system (1) in three dimensions (t, x, y) or in two dimensions,
using a tx-scene or a ty-scene. In all cases, the plot is a simple connect-
the-dots graphic.

3D-plot

2 2.5
5

2.522.52

100

104

5.8104

100
ty-scene tx-scene

Figure 23. Dot table plots.
The three dimensional plot is a space curve made directly from the dot ta-
ble. The tx-scene and the ty-scene are made from the same dot table using
corresponding data columns.

Myopic Algorithms. All of the popular algorithms for generating
a numerical dot table for system (1) are near-sighted, because they
predict the next line in the dot table from the current dot table line,
ignoring effects and errors for all other preceding dot table lines. Among
such algorithms are Euler’s method, Heun’s method and the RK4
method.



11.9 Numerical Methods for Systems 819

Numerical Algorithms: Planar Case

Stated here without proof are three numerical algorithms for solving two-
dimensional initial value problems (1). Justification of the formulas is
obtained from the vector relations in the next subsection.

Notation. Let t0, x0, y0 denote the entries of the dot table on a partic-
ular line. Let h be the increment for the dot table and let t0 + h, x, y
stand for the dot table entries on the next line.

Planar Euler Method.

x = x0 + hf(t0, x0, y0),
y = y0 + hg(t0, x0, y0).

Planar Heun Method.

x1 = x0 + hf(t0, x0, y0),
y1 = y0 + hg(t0, x0, y0),
x = x0 + h(f(t0, x0, y0) + f(t0 + h, x1, y1))/2
y = y0 + h(g(t0, x0, y0) + g(t0 + h, x1, y1))/2.

Planar RK4 Method.

k1 = hf(t0, x0, y0),
m1 = hg(t0, x0, y0),
k2 = hf(t0 + h/2, x0 + k1/2, y0 +m1/2),
m2 = hg(t0 + h/2, x0 + k1/2, y0 +m1/2),
k3 = hf(t0 + h/2, x0 + k2/2, y0 +m2/2),
m3 = hg(t0 + h/2, x0 + k2/2, y0 +m2/2),
k4 = hf(t0 + h, x0 + k3, y0 +m3),
m4 = hg(t0 + h, x0 + k3, y0 +m3),

x = x0 +
1

6
(k1 + 2k2 + 2k3 + k4) ,

y = y0 +
1

6
(m1 + 2m2 + 2m3 +m4) .

Numerical Algorithms: General Case

Consider a vector initial value problem

~u ′(t) = ~F(t, ~u(t)), ~u (t0) = ~u 0.

Described here are the vector formulas for Euler, Heun and RK4 meth-
ods. These myopic algorithms predict the next table dot t0 + h, ~u from
the current dot t0, ~u 0. The number of scalar values in a table dot is
1 + n, where n is the dimension of the vectors ~u and ~F .
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Vector Euler Method.

~u = ~u 0 + h~F (t0, ~u 0)

Vector Heun Method.

~w = ~u 0 + h~F (t0, ~u 0), ~u = ~u 0 +
h

2

(
~F(t0, ~u 0) + ~F (t0 + h, ~w )

)

Vector RK4 Method.

~k 1 = h~F(t0, ~u 0),
~k 1 = h~F(t0 + h/2, ~u 0 + ~k 1/2),
~k 1 = h~F(t0 + h/2, ~u 0 + ~k 2/2),
~k 1 = h~F(t0 + h, ~u 0 + ~k 3),

~u = ~u 0 +
1

6

(
~k 1 + 2~k 2 + 2~k 3 + ~k 4

)
.
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