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11.2 Basic First-order System Methods

Solving 2× 2 Systems

It is shown here that any constant linear system

u′ = Au, A =

(
a b
c d

)

can be solved by one of the following elementary methods.

(a) The integrating factor method for y′ = p(x)y + q(x).

(b) The second order constant coefficient formulas in Theo-
rem 45, Chapter 5.

Triangular A. Let’s assume b = 0, so that A is lower triangular. The
upper triangular case is handled similarly. Then u′ = Au has the scalar
form

u′1 = au1,
u′2 = cu1 + du2.

The first differential equation is solved by the growth/decay formula:

u1(t) = u0e
at.

Then substitute the answer just found into the second differential equa-
tion to give

u′2 = du2 + cu0e
at.

This is a linear first order equation of the form y′ = p(x)y + q(x), to be
solved by the integrating factor method. Therefore, a triangular system
can always be solved by the first order integrating factor method.

An illustration. Let us solve u′ = Au for the triangular matrix

A =

(
1 0
2 1

)
.

The first equation u′1 = u1 has solution u1 = c1e
t. The second equation

becomes

u′2 = 2c1e
t + u2,

which is a first order linear differential equation with solution u2 =
(2c1t + c2)e

t. The general solution of u′ = Au in scalar form is

u1 = c1e
t, u2 = 2c1te

t + c2e
t.
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The vector form of the general solution is

u(t) = c1

(
et

2tet

)
+ c2

(
0
et

)
.

The vector basis is the set

B =

{(
et

2tet

)
,

(
0
et

)}
.

Non-Triangular A. In order that A be non-triangular, both b 6= 0
and c 6= 0 must be satisfied. The scalar form of the system u′ = Au is

u′1 = au1 + bu2,
u′2 = cu1 + du2.

Theorem 1 (Solving Non-Triangular u′ = Au)
Solutions u1, u2 of u′ = Au are linear combinations of the list of atoms
obtained from the roots r of the quadratic equation

det(A− rI) = 0.

Proof: The method: differentiate the first equation, then use the equations to
eliminate u2, u′

2. The result is a second order differential equation for u1. The
same differential equation is satisfied also for u2. The details:

u′′
1 = au′

1 + bu′
2 Differentiate the first equation.

= au′
1 + bcu1 + bdu2 Use equation u′

2 = cu1 + du2.

= au′
1 + bcu1 + d(u′

1 − au1) Use equation u′
1 = au1 + bu2.

= (a + d)u′
1 + (bc− ad)u1 Second order equation for u1 found

The characteristic equation of u′′
1 − (a + d)u′

1 + (ad− bc)u1 = 0 is

r2 − (a + d)r + (bc− ad) = 0.

Finally, we show the expansion of det(A− rI) is the same characteristic poly-
nomial:

det(A− rI) =

∣∣∣∣ a− r b
c d− r

∣∣∣∣
= (a− r)(d− r)− bc
= r2 − (a + d)r + ad− bc.

The proof is complete.

The reader can verify that the differential equation for u1 or u2 is exactly

u′′ − trace(A)u′ + det(A)u = 0.

Finding u1. Apply the second order formulas, Theorem 45 in Chapter
5, to solve for u1. This involves writing a list L of atoms corresponding
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to the two roots of the characteristic equation r2− (a+d)r+ad−bc = 0,
followed by expressing u1 as a linear combination of the two atoms.

Finding u2. Isolate u2 in the first differential equation by division:

u2 =
1

b
(u′1 − au1).

The two formulas for u1, u2 represent the general solution of the system
u′ = Au, when A is 2× 2.

An illustration. Let’s solve u′ = Au when

A =

(
1 2
2 1

)
.

The equation det(A− rI) = 0 is (1− r)2 − 4 = 0 with roots r = −1 and
r = 3. The atom list is L = {e−t, e3t}. Then the linear combination of
atoms is u1 = c1e

−t + c2e
3t. The first equation u′1 = u1 + 2u2 implies

u2 = 1
2(u′1 − u1). The general solution of u′ = Au is then

u1 = c1e
−t + c2e

3t, u2 = −c1e−t + c2e
3t.

In vector form, the general solution is

u = c1

(
e−t

−e−t

)
+ c2

(
e3t

e3t

)
.

Triangular Methods

Diagonal n×n matrix A = diag(a1, . . . , an). Then the system x′ = Ax
is a set of uncoupled scalar growth/decay equations:

x′1(t) = a1x1(t),
x′2(t) = a2x2(t),

...
x′n(t) = anxn(t).

The solution to the system is given by the formulas

x1(t) = c1e
a1t,

x2(t) = c2e
a2t,

...
xn(t) = cne

ant.

The numbers c1, . . . , cn are arbitrary constants.
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Triangular n × n matrix A. If a linear system x′ = Ax has a square
triangular matrix A, then the system can be solved by first order scalar
methods. To illustrate the ideas, consider the 3× 3 linear system

x′ =

 2 0 0
3 3 0
4 4 4

x.

The coefficient matrix A is lower triangular. In scalar form, the system
is given by the equations

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 3x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 4x3(t).

A recursive method. The system is solved recursively by first order
scalar methods only, starting with the first equation x′1(t) = 2x1(t). This
growth equation has general solution x1(t) = c1e

2t. The second equation
then becomes the first order linear equation

x′2(t) = 3x1(t) + 3x2(t)
= 3x2(t) + 3c1e

2t.

The integrating factor method applies to find the general solution x2(t) =
−3c1e

2t+c2e
3t. The third and last equation becomes the first order linear

equation

x′3(t) = 4x1(t) + 4x2(t) + 4x3(t)
= 4x3(t) + 4c1e

2t + 4(−3c1e
2t + c2e

3t).

The integrating factor method is repeated to find the general solution
x3(t) = 4c1e

2t − 4c2e
3t + c3e

4t.

In summary, the solution to the system is given by the formulas

x1(t) = c1e
2t,

x2(t) = −3c1e
2t + c2e

3t,
x3(t) = 4c1e

2t − 4c2e
3t + c3e

4t.

Structure of solutions. A system x′ = Ax for n × n triangular A
has component solutions x1(t), . . . , xn(t) given as polynomials times
exponentials. The exponential factors ea11t, . . . , eannt are expressed in
terms of the diagonal elements a11, . . . , ann of the matrix A. Fewer than
n distinct exponential factors may appear, due to duplicate diagonal
elements. These duplications cause the polynomial factors to appear.
The reader is invited to work out the solution to the system below,
which has duplicate diagonal entries a11 = a22 = a33 = 2.

x′1(t) = 2x1(t),
x′2(t) = 3x1(t) + 2x2(t),
x′3(t) = 4x1(t) + 4x2(t) + 2x3(t).
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The solution, given below, has polynomial factors t and t2, appearing
because of the duplicate diagonal entries 2, 2, 2, and only one exponential
factor e2t.

x1(t) = c1e
2t,

x2(t) = 3c1te
2t + c2e

2t,
x3(t) = 4c1te

2t + 6c1t
2e2t + 4c2te

2t + c3e
2t.

Conversion to Systems

Routinely converted to a system of equations of first order are scalar
second order linear differential equations, systems of scalar second order
linear differential equations and scalar linear differential equations of
higher order.

Scalar second order linear equations. Consider an equation
au′′ + bu′ + cu = f where a 6= 0, b, c, f are allowed to depend on t,
′ = d/dt. Define the position-velocity substitution

x(t) = u(t), y(t) = u′(t).

Then x′ = u′ = y and y′ = u′′ = (−bu′− cu+f)/a = −(b/a)y− (c/a)x+
f/a. The resulting system is equivalent to the second order equation, in
the sense that the position-velocity substitution equates solutions of one
system to the other:

x′(t) = y(t),

y′(t) = − c(t)

a(t)
x(t)− b(t)

a(t)
y(t) +

f(t)

a(t)
.

The case of constant coefficients and f a function of t arises often enough
to isolate the result for further reference.

Theorem 2 (System Equivalent to Second Order Linear)
Let a 6= 0, b, c be constants and f(t) continuous. Then au′′+bu′+cu = f(t)
is equivalent to the first order system

aw′(t) =

(
0 a
−c −b

)
w(t) +

(
0

f(t)

)
, w(t) =

(
u(t)
u′(t)

)
.

Converting second order systems to first order systems. A sim-
ilar position-velocity substitution can be carried out on a system of two
second order linear differential equations. Assume

a1u
′′
1 + b1u

′
1 + c1u1 = f1,

a2u
′′
2 + b2u

′
2 + c2u2 = f2.
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Then the preceding methods for the scalar case give the equivalence
a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2




u1
u′1
u2
u′2


′

=


0 a1 0 0
−c1 −b1 0 0

0 0 0 a2
0 0 −c2 −b2




u1
u′1
u2
u′2

+


0
f1
0
f2

 .

Coupled spring-mass systems. Springs connecting undamped cou-
pled masses were considered at the beginning of this chapter, page 746.
Typical equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(1)

The equations can be represented by a second order linear system of
dimension 3 of the form Mx′′ = Kx, where the position x, the mass
matrix M and the Hooke’s matrix K are given by the equalities

x =

 x1
x2
x3

 , M =

 m1 0 0
0 m2 0
0 0 m3

 ,

K =

 −(k1 + k2) k2 0
k2 −(k2 + k3) k3
0 −k3 −(k3 + k4)

 .

Systems of second order linear equations. A second order sys-
tem Mx′′ = Kx + F(t) is called a forced system and F is called the
external vector force. Such a system can always be converted to a sec-
ond order system where the mass matrix is the identity, by multiplying
by M−1:

x′′ = M−1Kx + M−1F(t).

The benign form x′′ = Ax + G(t), where A = M−1K and G = M−1F,
admits a block matrix conversion into a first order system:

d

dt

(
x(t)
x′(t)

)
=

(
0 I

A 0

)(
x(t)
x′(t)

)
+

(
0

G(t)

)
.

Damped second order systems. The addition of a dampener to each
of the masses gives a damped second order system with forcing

Mx′′ = Bx′ + KX + F(t).

In the case of one scalar equation, the matrices M , B, K are constants
m, −c, −k and the external force is a scalar function f(t), hence the
system becomes the classical damped spring-mass equation

mx′′ + cx′ + kx = f(t).
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A useful way to write the first order system is to introduce variable
u = Mx, in order to obtain the two equations

u′ = Mx′, u′′ = Bx′ + Kx + F(t).

Then a first order system in block matrix form is given by(
M 0

0 M

)
d

dt

(
x(t)
x′(t)

)
=

(
0 M

K B

)(
x(t)
x′(t)

)
+

(
0

F(t)

)
.

The benign form x′′ = M−1Bx′+M−1Kx +M−1F(t), obtained by left-
multiplication by M−1, can be similarly written as a first order system
in block matrix form.

d

dt

(
x(t)
x′(t)

)
=

(
0 I

M−1K M−1B

)(
x(t)
x′(t)

)
+

(
0

M−1F(t)

)
.

Higher order linear equations. Every homogeneous nth order
constant-coefficient linear differential equation

y(n) = p0y + · · ·+ pn−1y
(n−1)

can be converted to a linear homogeneous vector-matrix system

d

dx


y
y′

y′′

...

y(n−1)

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
p0 p1 p2 · · · pn−1




y
y′

y′′

...

y(n−1)

 .

This is a linear system u′ = Au where u is the n × 1 column vector
consisting of y and its successive derivatives, while the n × n matrix A
is the classical companion matrix of the characteristic polynomial

rn = p0 + p1r + p2r
2 + · · ·+ pn−1r

n−1.

To illustrate, the companion matrix for r4 = a + br + cr2 + dr3 is

A =


0 1 0 0
0 0 1 0
0 0 0 1
a b c d

 .

The preceding companion matrix has the following block matrix form,
which is representative of all companion matrices.

A =

(
0 I

a b c d

)
.
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Continuous coefficients. It is routinely observed that the methods
above for conversion to a first order system apply equally as well to
higher order linear differential equations with continuous coefficients. To
illustrate, the fourth order linear equation yiv = a(x)y+b(x)y′+c(x)y′′+
d(x)y′′′ has first order system form u′ = Au where A is the companion
matrix for the polynomial r4 = a(x) + b(x)r + c(x)r2 + d(x)r3, x held
fixed.

Forced higher order linear equations. All that has been said above
applies equally to a forced linear equation like

yiv = 2y + sin(x)y′ + cos(x)y′′ + x2y′′′ + f(x).

It has a conversion to a first order nonhomogeneous linear system

u′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 sinx cosx x2

u +


0
0
0

f(x)

 , u =


y
y′

y′′

y′′′

 .


