Atoms

An atom is a term with coefficient 1 obtained by taking the real and imaginary parts of

$$
x^{j} e^{a x+i c x}, \quad j=0,1,2, \ldots,
$$

where \boldsymbol{a} and \boldsymbol{c} represent real numbers and $\boldsymbol{c} \geq 0$.

Details and Remarks

- The definition plus Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ implies that an atom is a term of one of the following types:

$$
x^{n}, x^{n} e^{a x}, x^{n} e^{a x} \cos b x, x^{n} e^{a x} \sin b x .
$$

The symbol n is an integer $0,1,2, \ldots$ and a, b are real numbers with $b>0$.

- In particular, $1, x, x^{2}, \ldots, x^{k}$ are atoms.
- The term that makes up an atom has coefficient 1 , therefore $2 e^{x}$ is not an atom, but the 2 can be stripped off to create the atom e^{x}. Linear combinations like $2 x+3 x^{2}$ are not atoms, but the individual terms x and x^{2} are indeed atoms. Terms like $e^{x^{2}}, \ln |x|$ and $x /\left(1+x^{2}\right)$ are not atoms, nor are they constructed from atoms.

Independence

Linear algebra defines a list of functions f_{1}, \ldots, f_{k} to be linearly independent if and only if the representation of the zero function as a linear combination of the listed functions is uniquely represented, that is,

$$
0=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{k} f_{k}(x) \text { for all } x
$$

implies $c_{1}=c_{2}=\cdots=c_{k}=0$.
Independence and Atoms \qquad
\qquad
Theorem 1 (Atoms are Independent)
A list of finitely many distinct atoms is linearly independent.
Theorem 2 (Powers are Independent)
The list of distinct atoms $1, x, x^{2}, \ldots, x^{k}$ is linearly independent.

Theorem 3 (Homogeneous Solution y_{h} and Atoms)

Linear homogeneous differential equations with constant coefficients have general solution $y_{h}(x)$ equal to a linear combination of atoms.

Theorem 4 (Particular Solution y_{p} and Atoms)

A linear non-homogeneous differential equation with constant coefficients a having forcing term $f(x)$ equal to a linear combination of atoms has a particular solution $y_{p}(x)$ which is a linear combination of atoms.

Theorem 5 (General Solution y and Atoms)

A linear non-homogeneous differential equation with constant coefficients having forcing term

$$
f(x)=\text { a linear combination of atoms }
$$

has general solution

$$
y(x)=y_{h}(x)+y_{p}(x)=\text { a linear combination of atoms. }
$$

Details

The first theorem follows from Picard's theorem, Euler's theorem and independence of atoms. The second follows from the method of undetermined coefficients, infra. The third theorem follows from the first two.
The second order recipe justifies the first theorem for the special case of second order differential equations, because $e^{r_{1} x}, e^{r_{2} x}, x e^{r_{1} x}, e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are atoms.

How to Solve \boldsymbol{n}-th Order Equations

- Picard's existence-uniqueness theorem says that $y^{\prime \prime \prime}+2 y^{\prime \prime}+y=0$ has general solution \boldsymbol{y} constructed from $\boldsymbol{n}=3$ solutions of this differential equation. More precisely, the general solution of an \boldsymbol{n}-th order linear differential equation is constructed from \boldsymbol{n} solutions of the equation.
- Linear algebra says that the dimension of the solution set is this same fixed number \boldsymbol{n}. Once \boldsymbol{n} independent solutions are found for the differential equation, the search for the general solution has ended: \boldsymbol{y} must be a linear combination of these \boldsymbol{n} independent solutions.
- Because of the preceding structure theorems, we have reduced our search for the general solution as follows:

Find \boldsymbol{n} distinct atoms which are solutions of the differential equation.

Finding Solutions which are Atoms

Euler supplies us with a basic result, which tells us how to find the list of distinct atoms, which forms a basis of solutions of the linear differential equation.

Theorem 6 (Euler)

The function $e^{r x}$ is a solution of a linear constant-coefficient differential equation if and only if r is a root of the characteristic equation.
More generally, the $k+1$ distinct atoms

$$
e^{r x}, x e^{r x}, \ldots, x^{k} e^{r x}
$$

are solutions if and only if r is a root of the characteristic equation of multiplicity $k+1$.

Theorem 7 (Complex Roots)

If $r=\alpha+i \beta$ is a complex root of multiplicity $k+1$, then the formula $e^{i \theta}=\cos \theta+i \sin \theta$ implies

$$
e^{r x}=e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) .
$$

Therefore, the $2 k+2$ distinct atoms listed below are independent solutions of the differential equation:

$$
\begin{array}{llll}
e^{\alpha x} \cos (\beta x), & x e^{\alpha x} \cos (\beta x), & \ldots, & x^{k} e^{\alpha x} \cos (\beta x) \\
e^{\alpha x} \sin (\beta x), & x e^{\alpha x} \sin (\beta x), & \ldots, & x^{k} e^{\alpha x} \sin (\beta x)
\end{array}
$$

