Atom List. L. Euler supplies us with a basic result, which tells us how to find the list of distinct atoms.

Theorem 1 (Euler)

The function e^{rx} is a solution of a linear constant coefficient differential equation if and only if r is a root of the characteristic equation.

More generally, the list of distinct atoms e^{rx} , xe^{rx} , ..., $x^k e^{rx}$ consists of solutions if and only if r is a root of the characteristic equation of multiplicity k + 1.

If $r = \alpha + i\beta$ is a complex root of multiplicity k + 1, then the formula $e^{i\theta} = \cos \theta + i \sin \theta$ implies

$$e^{rx} = e^{lpha x} \cos(eta x) + i e^{lpha x} \sin(eta x).$$

Therefore, the 2k + 2 distinct atoms listed below are independent solutions of the differential equation:

$$e^{lpha x}\cos(eta x),\;xe^{lpha x}\cos(eta x),\;\ldots,\;x^ke^{lpha x}\cos(eta x),\ e^{lpha x}\sin(eta x),\;xe^{lpha x}\sin(eta x),\;\ldots,\;x^ke^{lpha x}\sin(eta x)$$

1 Example (First Order) Solve 2y' + 5y = 0 by using the *n*th order recipe, showing $y_h = c_1 e^{-5x/2}$.

Solution: The characteristic equation is 2r + 5 = 0 with real root r = -5/2 and corresponding atom e^{rx} given explicitly by $e^{-5x/2}$. Euler's Theorem was applied here. The order of the differential equation is 1, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{-5x/2}$.

2 Example (Second Order I) Solve y'' + 2y' + y = 0 by using the *n*th order recipe, showing $y_h = c_1 e^{-x} + c_2 x e^{-x}$.

Solution: The characteristic equation is $r^2 + 2r + 1 = 0$ with double real root r = -1, -1. Euler's Theorem applies to report atom list e^{rx} , xe^{rx} , given explicitly by e^{-x} , xe^{-x} . The order of the differential equation is 2, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{-x} + c_2 x e^{-x}$.

3 Example (Second Order II) Solve y'' + 3y' + 2y = 0 by using the *n*th order recipe, showing $y_h = c_1 e^{-x} + c_2 e^{-2x}$.

Solution: The characteristic equation is $r^2 + 3r + 2 = 0$ with distinct real roots $r_1 = -1$, $r_2 = -2$. Euler's Theorem applies to report atom list e^{r_1x} , e^{r_2x} , given explicitly by e^{-x} , e^{-2x} . The order of the differential equation is 2, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{-x} + c_2 e^{-2x}$.

4 Example (Second Order III) Solve y'' + 2y' + 5y = 0 by using the *n*th order recipe, showing $y_h = c_1 e^{-x} \cos 2x + c_2 x e^{-x} \sin 2x$.

Solution: The characteristic equation is $r^2 + 2r + 5 = 0$ with complex conjugate roots $r_1 = -1 + 2i$, $r_2 = -1 - 2i$. Euler's Theorem applies to report an atom list $e^{\alpha x} \cos \beta x$, $e^{\alpha x} \sin \beta x$, where $\alpha = -1$, $\beta = 2$ are the real and imaginary parts of the root $\alpha + i\beta = -1 + 2i$ (then $\alpha = -1$, $\beta = 2$). The atom list is given explicitly by $e^{-x} \cos 2x$, $e^{-x} \sin 2x$. The order of the differential equation is 2, so we have found all atoms. The lesson: applying Euler's theorem to the second conjugate root -1 - 2i will produce no new atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{-x} \cos 2x + c_2 e^{-x} \sin 2x$.

5 Example (Third Order I) Solve y''' - y' = 0 by using the *n*th order recipe, showing $y_h = c_1 + c_2 e^x + c_3 e^{-x}$.

Solution: The characteristic equation is $r^3 - r = 0$ with real roots $r_1 = 0$, $r_2 = 1$, $r_3 = -1$. Euler's Theorem applies to report atom list e^{r_1x} , e^{r_2x} , e^{r_3x} given explicitly by e^{0x} , e^x , e^{-x} . The order of the differential equation is 3, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{0x} + c_2 e^x + c_3 e^{-x}$. Convention dictates replacing e^{0x} by 1 in the final equation. 6 Example (Third Order II) Solve y''' - y'' = 0 by using the *n*th order recipe, showing $y_h = c_1 + c_2 x + c_3 e^x$.

Solution: The characteristic equation is $r^3 - r^2 = 0$ with real roots $r_1 = 0$, $r_2 = 0$, $r_3 = 1$. Euler's Theorem applies to report atom list e^{r_1x} , xe^{r_1x} , e^{r_3x} given explicitly by e^{0x} , xe^{0x} , e^x . The order of the differential equation is 3, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1e^{0x} + c_2xe^{0x} + c_3e^x$. Convention dictates replacing e^{0x} by 1 in the final equation.

7 Example (Fourth Order) Solve $y^{iv} - y'' = 0$ by using the *n*th order recipe, showing $y_h = c_1 + c_2 x + c_3 e^x + c_4 e^{-x}$.

Solution: The characteristic equation is $r^4 - r^2 = 0$ with real roots $r_1 = 0$, $r_2 = 0$, $r_3 = 1$, $r_4 = -1$. Euler's Theorem applies to obtain the atom list e^{r_1x} , xe^{r_1x} , e^{r_3x} , e^{r_4x} , given explicitly by e^{0x} , xe^{0x} , e^x , e^{-x} . The order of the differential equation is 4, so we have found all atoms. The general solution y_h is written by multiplying the atom list by constants c_1, c_2, \ldots , and therefore $y_h = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^x + c_4 e^{-x}$. Convention replaces e^{0x} by 1 in the final equation.