Atom List. L. Euler supplies us with a basic result, which tells us how to find the list of distinct atoms.

Theorem 1 (Euler)

The function $e^{r x}$ is a solution of a linear constant coefficient differential equation if and only if r is a root of the characteristic equation. More generally, the list of distinct atoms $e^{r x}, x e^{r x}, \ldots, x^{k} e^{r x}$ consists of solutions if and only if r is a root of the characteristic equation of multiplicity $k+1$.
If $\boldsymbol{r}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$ is a complex root of multiplicity $\boldsymbol{k}+1$, then the formula $e^{i \theta}=\cos \theta+i \sin \theta$ implies

$$
e^{r x}=e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x)
$$

Therefore, the $2 \boldsymbol{k}+\mathbf{2}$ distinct atoms listed below are independent solutions of the differential equation:

$$
\begin{array}{llll}
e^{\alpha x} \cos (\boldsymbol{\beta} x), & x e^{\alpha x} \cos (\boldsymbol{\beta} x), \ldots, x^{k} e^{\alpha x} \cos (\boldsymbol{\beta} x) \\
e^{\alpha x} \sin (\boldsymbol{\beta x}), & x e^{\alpha x} \sin (\boldsymbol{\beta} x), \ldots, x^{k} e^{\alpha x} \sin (\boldsymbol{\beta} x)
\end{array}
$$

1 Example (First Order) Solve $2 y^{\prime}+5 y=0$ by using the nth order recipe, showing $y_{h}=c_{1} e^{-5 x / 2}$.
Solution: The characteristic equation is $2 r+5=0$ with real root $r=-5 / 2$ and corresponding atom $e^{r x}$ given explicitly by $e^{-5 x / 2}$. Euler's Theorem was applied here. The order of the differential equation is 1 , so we have found all atoms. The general solution \boldsymbol{y}_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{-5 x / 2}$.

2 Example (Second Order I) Solve $\boldsymbol{y}^{\prime \prime}+2 \boldsymbol{y}^{\prime}+\boldsymbol{y}=0$ by using the \boldsymbol{n} th order recipe, showing $y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}$.
Solution: The characteristic equation is $r^{2}+2 r+1=0$ with double real root $r=-1,-1$. Euler's Theorem applies to report atom list $e^{r x}, x e^{r x}$, given explicitly by $e^{-x}, x e^{-x}$. The order of the differential equation is 2 , so we have found all atoms. The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}$.

3 Example (Second Order II) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=0$ by using the nth order recipe, showing $y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$.
Solution: The characteristic equation is $r^{2}+3 r+2=0$ with distinct real roots $r_{1}=-1$, $r_{2}=-2$. Euler's Theorem applies to report atom list $e^{r_{1} x}, e^{r_{2} x}$, given explicitly by $e^{-x}, e^{-2 x}$. The order of the differential equation is 2 , so we have found all atoms. The general solution $\boldsymbol{y}_{\boldsymbol{h}}$ is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{-x}+c_{2} e^{-2 x}$.

4 Example (Second Order III) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=0$ by using the nth order recipe, showing $y_{h}=c_{1} e^{-x} \cos 2 x+c_{2} x e^{-x} \sin 2 x$.
Solution: The characteristic equation is $r^{2}+2 r+5=0$ with complex conjugate roots $r_{1}=-1+2 i, r_{2}=-1-2 i$. Euler's Theorem applies to report an atom list $e^{\alpha x} \cos \beta x$, $e^{\alpha x} \sin \beta x$, where $\alpha=-1, \beta=2$ are the real and imaginary parts of the root $\alpha+i \beta=-1+2 i$ (then $\alpha=-1, \beta=2$). The atom list is given explicitly by $e^{-x} \cos 2 x, e^{-x} \sin 2 x$. The order of the differential equation is 2 , so we have found all atoms. The lesson: applying Euler's theorem to the second conjugate root $-1-2 i$ will produce no new atoms. The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{-x} \cos 2 x+$ $c_{2} e^{-x} \sin 2 x$.

5 Example (Third Order I) Solve $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime}=0$ by using the \boldsymbol{n} th order recipe, showing $y_{h}=c_{1}+c_{2} e^{x}+c_{3} e^{-x}$.
Solution: The characteristic equation is $r^{3}-r=0$ with real roots $r_{1}=0, r_{2}=1, r_{3}=-1$. Euler's Theorem applies to report atom list $e^{r_{1} x}, e^{r_{2} x}, e^{r_{3} x}$ given explicitly by $e^{0 x}, e^{x}, e^{-x}$. The order of the differential equation is 3 , so we have found all atoms. The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{0 x}+c_{2} e^{x}+$ $c_{3} e^{-x}$. Convention dictates replacing $e^{0 x}$ by 1 in the final equation.

6 Example (Third Order II) Solve $\boldsymbol{y}^{\prime \prime \prime}-\boldsymbol{y}^{\prime \prime}=0$ by using the \boldsymbol{n} th order recipe, showing $y_{h}=c_{1}+c_{2} x+c_{3} e^{x}$.
Solution: The characteristic equation is $r^{3}-r^{2}=0$ with real roots $r_{1}=0, r_{2}=0$, $r_{3}=1$. Euler's Theorem applies to report atom list $e^{r_{1} x}, x e^{r_{1} x}, e^{r_{3} x}$ given explicitly by $e^{0 x}$, $x e^{0 x}, e^{x}$. The order of the differential equation is 3 , so we have found all atoms. The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=$ $c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{x}$. Convention dictates replacing $e^{0 x}$ by 1 in the final equation.

7 Example (Fourth Order) Solve $\boldsymbol{y}^{i v}-\boldsymbol{y}^{\prime \prime}=\mathbf{0}$ by using the \boldsymbol{n} th order recipe, showing $y_{h}=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x}$.
Solution: The characteristic equation is $r^{4}-r^{2}=0$ with real roots $r_{1}=0, r_{2}=0, r_{3}=1$, $r_{4}=-1$. Euler's Theorem applies to obtain the atom list $e^{r_{1} x}, x e^{r_{1} x}, e^{r_{3} x}, e^{r_{4} x}$, given explicitly by $e^{0 x}, x e^{0 x}, e^{x}, e^{-x}$. The order of the differential equation is 4 , so we have found all atoms. The general solution y_{h} is written by multiplying the atom list by constants c_{1}, c_{2}, \ldots, and therefore $y_{h}=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{x}+c_{4} e^{-x}$. Convention replaces $e^{0 x}$ by 1 in the final equation.

