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An Undetermined Coefficients Illustration

The differential equation y′′−y = x+xex will be solved. Verified for general
solution y = yh + yp are the formulas

yh = c1e
x + c2e

−x, yp = −x−
1

4
xex +

1

4
x2ex.

Homogeneous solution. The homogeneous equation y′′ − y = 0 has characteristic
equation r2−1 = 0, roots r = ±1, and atom list ex, e−x. Then yh = c1e

x+c2e
−x.

Rule I trial solution. Let f(x) = x + xex. The derivatives f , f ′, f ′′, . . . have atom
list

1, x, ex, xex.

Then k = 4 is the number of atoms in the trial solution. Because atom ex is a solution of
the homogeneous equation y′′ − y = 0, then Rule I FAILS.



Rule II trial solution. Break up the atom list for f into groups with the same base atom,
as follows.

Group Atoms Base atom
1 1, x e0x

2 ex, xex ex

Group 1 is unchanged, because the first atom 1 is not a solution of the homogeneous equa-
tion y′′ − y = 0. Group 2 has a FAIL, because the first atom ex is a solution of the
homogeneous equation y′′ − y = 0, as seen in Rule I. We multiply group 2 by factor
x, then the first atom is xex, which is not a solution of the homogeneous equation [Eulers
theorem says xex is a solution if and only 1 is a double root of the characteristic equation
r2 − 1 = 0; it isn’t].

Group Atoms
1 1, x

New 2 xex, x2ex

The trial solution, according to Rule II, is a linear combination of the atoms in the last table.

y = (d1 + d2x) + (d3xe
x + d4x

2ex).



Substitute the trial solution into the DE

Substitute y(d1+d2x)+ (d3xe
x+d4x

2ex) into y′′−y = x+xex. The details:

LHS = y′′ − y Left side of the equation.
= [y′′1 − y1] + [y′′2 − y2] Let y = y1 + y2, y1 = d1 + d2x,

y2 = d3xe
x + d4x

2ex.
= [0− y1]+

[2d3e
x + 2d4e

x + 4d4xe
x]

Use y′′1 = 0 and y′′2 = y2 + 2d3e
x +

2d4e
x + 4d4xe

x.
= (−d1)1 + (−d2)x+

(2d3 +2d4)e
x + (4d4)xe

x
Collect on distinct atoms.



Write out a 4× 4 system. Because LHS = RHS and RHS = x+xex, the last display
gives the relation

(−d1)1 + (−d2)x+
(2d3 + 2d4)e

x + (4d4)xe
x = (0)1 + (1)x + (0)ex + (1)xex.

(1)

Equate coefficients of matching atoms left and right to give the system of equations

−d1 = 0,
−d2 = 1,

2d3 +2d4 = 0,
4d4 = 1.

(2)

Atom matching effectively removes x and changes the equation into a 4×4 linear system
for symbols d1, d2, d3, d4.



Atom Matching Explained. The technique is independence. To explain, independence of
atoms means that a linear combination of atoms is uniquely represented, hence two such
equal representations must have matching coefficients. Relation (1) says that two linear
combinations of the same list of atoms are equal. Hence coefficients left and right in (1)
must match, which gives 4× 4 system (2).

Solve the equations. The 4×4 system must always have a unique solution. Equivalently,
there are four lead variables and zero free variables. Solving by back-substitution gives
d1 = 0, d2 = −1, d3 = 1/4, d4 = −1/4.

Report yp. The trial solution with determined coefficients d1 = 0, d2 = −1, d3 =
−1/4, d4 = 1/4 becomes the particular solution

yp = −x−
1

4
xex +

1

4
x2ex.



Report y = yh + yp

From above,

yh = c1e
x + c2e

−x, yp = −x−
1

4
xex +

1

4
x2ex.

Then y = yh + yp is given by

y = c1e
x + c2e

−x − x−
1

4
xex +

1

4
x2ex.

Answer check. Computer algebra system maple is used.
yh:=c1*exp(x)+c2*exp(-x);
yp:=-x-(1/4)*x*exp(x)+(1/4)*xˆ2*exp(x);
de:=diff(y(x),x,x)-y(x)=x+x*exp(x):
odetest(y(x)=yh+yp,de); # Success is a report of zero.



Pure Resonance
Graphed in Figure 7 are the envelope curves x = ±t and the solution x(t) = t sin 4t
of the equation x′′(t) + 16x(t) = 8 cosωt, where ω = 4.

x

t

Figure 1. Pure resonance.
The notion of pure resonance in the differential equation

x′′(t) + ω2
0 x(t) = F0 cos(ωt)(3)

is the existence of a solution that is unbounded as t → ∞. We already know that for ω 6= ω0, the general
solution of (6) is the sum of two harmonic oscillations, hence it is bounded. Equation (6) for ω = ω0 has

by the method of undetermined coefficients the unbounded oscillatory solution x(t) =
F0

2ω0
t sin(ω0 t). To

summarize:

Pure resonance occurs exactly when the natural internal frequency ω0 matches the natural
external frequency ω, in which case all solutions of the differential equation are unbounded.

In Figure 7, this is illustrated for x′′(t) + 16x(t) = 8 cos 4t, which in (6) corresponds to ω = ω0 = 4 and
F0 = 8.



Real-World Damping Effects
The notion of pure resonance is easy to understand both mathematically and physically, because frequency
matching

ω = ω0 ≡
√

k/m

characterizes the event. This ideal situation never happens in the physical world, because damping is always
present. In the presence of damping c > 0, it can be established that only bounded solutions exist for the forced
spring-mass system

mx′′(t) + cx′(t) + kx(t) = F0 cosωt.(4)

Our intuition about resonance seems to vaporize in the presence of damping effects. But not completely. Most
would agree that the undamped intuition is correct when the damping effects are nearly zero.
Practical resonance is said to occur when the external frequency ω has been tuned to produce the largest
possible solution amplitude. It can be shown that this happens for the condition

ω =
√

k/m− c2/(2m2), k/m− c2/(2m2) > 0.(5)

Pure resonance ω = ω0 ≡
√

k/m is the limiting case obtained by setting the damping constant c to zero in
condition (8). This strange but predictable interaction exists between the damping constant c and the size of
solutions, relative to the external frequency ω, even though all solutions remain bounded.


