Stability of Dynamical systems

- Stability
- Isolated equilibria
- Classification of Isolated Equilibria
- Attractor and Repeller
- Almost linear systems
- Jacobian Matrix

Stability
Consider an autonomous system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$ with $\overrightarrow{\mathbf{f}}$ continuously differentiable in a region \boldsymbol{D} in the plane.

Stable equilibrium. An equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ in \boldsymbol{D} is said to be stable provided for each $\boldsymbol{\epsilon}>\boldsymbol{0}$ there corresponds $\boldsymbol{\delta}>\mathbf{0}$ such that (a) and (b) hold:
(a) Given $\overrightarrow{\mathbf{u}}(0)$ in \boldsymbol{D} with $\left\|\overrightarrow{\mathbf{u}}(0)-\overrightarrow{\mathbf{u}}_{0}\right\|<\boldsymbol{\delta}$, then $\overrightarrow{\mathbf{u}}(\boldsymbol{t})$ exists on $\mathbf{0} \leq \boldsymbol{t}<\infty$.
(b) Inequality $\left\|\overrightarrow{\mathrm{u}}(t)-\overrightarrow{\mathrm{u}}_{0}\right\|<\epsilon$ holds for $0 \leq \boldsymbol{t}<\infty$.

Unstable equilibrium. The equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ is called unstable provided it is not stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point $\overrightarrow{\mathbf{u}}_{\mathbf{0}}$ is said to be asymptotically stable provided (a) and (b) hold (it is stable), and additionally
(c) $\lim _{t \rightarrow \infty}\left\|\overrightarrow{\mathbf{u}}(t)-\overrightarrow{\mathbf{u}}_{0}\right\|=0$ for $\left\|\overrightarrow{\mathbf{u}}(0)-\overrightarrow{\mathbf{u}}_{0}\right\|<\delta$.

Isolated equilibria

An autonomous system is said to have an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{\mathbf{0}}$ provided $\overrightarrow{\mathbf{u}}_{0}$ is the only constant solution of the system in $\left|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right|<r$, for $\boldsymbol{r}>\mathbf{0}$ sufficiently small.

Theorem 1 (Isolated Equilibrium)

The following are equivalent for a constant planar system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\boldsymbol{A} \overrightarrow{\mathbf{u}}(\boldsymbol{t})$:

1. The system has an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$.
2. $\operatorname{det}(A) \neq 0$.
3. The roots λ_{1}, λ_{2} of $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda I})=0$ satisfy $\lambda_{1} \boldsymbol{\lambda}_{2} \neq 0$.

Proof: The expansion $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)=\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2}$ shows that $\operatorname{det}(A)=$ $\lambda_{1} \boldsymbol{\lambda}_{2}$. Hence $\mathbf{2} \equiv \mathbf{3}$. We prove now $\mathbf{1} \equiv \mathbf{2}$. If $\operatorname{det}(\boldsymbol{A})=\mathbf{0}$, then $\boldsymbol{A} \overrightarrow{\mathrm{u}}=\overrightarrow{0}$ has infinitely many solutions $\overrightarrow{\mathrm{u}}$ on a line through $\overrightarrow{0}$, therefore $\overrightarrow{\mathrm{u}}=\overrightarrow{0}$ is not an isolated equilibrium. If $\operatorname{det}(\boldsymbol{A}) \neq 0$, then $\boldsymbol{A} \overrightarrow{\mathrm{u}}=\overrightarrow{0}$ has exactly one solution $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$, so the system has an isolated equilibrium at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$.

Classification of Isolated Equilibria

For linear equations

$$
\overrightarrow{\mathbf{u}}^{\prime}(t)=A \overrightarrow{\mathbf{u}}(t)
$$

we explain the phase portrait classifications

spiral, center, saddle, node

near an isolated equilibrium point $\overrightarrow{\mathbf{u}}=\overrightarrow{0}$, and how to detect these classifications, when they occur.

Symbols $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ are the roots of $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=0$.
Euler solution atoms corresponding to roots $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ happen to classify the phase portrait as well as its stability. A shortcut will be explained to determine a classification, based only on the atoms.

Figure 1. Spiral

Figure 3. Saddle

Figure 5. Proper node

Spiral $\quad \lambda_{1}=\bar{\lambda}_{2}=a+i b$ complex, $a \neq 0, b>0$.
A spiral has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathrm{u}}(t)=e^{a t} \cos (b t) \overrightarrow{\mathrm{c}}_{1}+e^{a t} \sin (b t) \overrightarrow{\mathbf{c}}_{2} \\
& \overrightarrow{\mathbf{c}}_{1}=\overrightarrow{\mathrm{u}}(0), \quad \overrightarrow{\mathbf{c}}_{2}=\frac{A-a I}{b} \overrightarrow{\mathbf{u}}(0)
\end{aligned}
$$

All solutions are bounded harmonic oscillations of natural frequency b times an exponential amplitude which grows if $a>0$ and decays if $a<0$. An orbit in the phase plane spirals out if $a>0$ and spirals in if $a<0$.

Center $\quad \lambda_{1}=\bar{\lambda}_{2}=a+i b$ complex, $a=0, b>0$
A center has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=\cos (b t) \overrightarrow{\mathbf{c}}_{1}+\sin (b t) \overrightarrow{\mathrm{c}}_{2}, \\
& \overrightarrow{\mathrm{c}}_{1}=\overrightarrow{\mathrm{u}}(0), \quad \overrightarrow{\mathrm{c}}_{2}=\frac{1}{b} A \overrightarrow{\mathrm{u}}(0) .
\end{aligned}
$$

All solutions are bounded harmonic oscillations of natural frequency b. Orbits in the phase plane are periodic closed curves of period $2 \pi / b$ which encircle the origin.

Saddle $\quad \boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ real, $\boldsymbol{\lambda}_{1} \boldsymbol{\lambda}_{2}<0$
A saddle has solution formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}}(t)=e^{\lambda_{1} t} \overrightarrow{\mathbf{c}}_{1}+e^{\lambda_{2} t} \overrightarrow{\mathbf{c}}_{2} \\
& \overrightarrow{\mathrm{c}}_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}} \overrightarrow{\mathbf{u}}(0), \quad \overrightarrow{\mathbf{c}}_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}} \overrightarrow{\mathbf{u}}(0) .
\end{aligned}
$$

The phase portrait shows two lines through the origin which are tangents at $t= \pm \infty$ for all orbits.
A saddle is unstable at $t=\infty$ and $t=-\infty$, due to the limits of the atoms $e^{r_{1} t}, e^{r_{2} t}$ at $t= \pm \infty$.

Node $\quad \boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}$ real, $\boldsymbol{\lambda}_{1} \boldsymbol{\lambda}_{2}>0$
The solution formulas are

$$
\begin{aligned}
& \vec{u}(t)=e^{\lambda_{1} t}\left(\vec{a}_{1}+t \vec{a}_{2}\right), \quad \text { when } \lambda_{1}=\lambda_{2}, \\
& \vec{a}_{1}=\vec{u}(0), \quad \vec{a}_{2}=\left(A-\lambda_{1} I\right) \vec{u}(0), \\
& \vec{u}(t)=e^{\lambda_{1} t} \vec{b}_{1}+e^{\lambda_{2} t} \vec{b}_{2}, \quad \text { when } \quad \lambda_{1} \neq \lambda_{2}, \\
& \vec{b}_{1}=\frac{A-\lambda_{2} I}{\lambda_{1}-\lambda_{2}} \vec{u}(0), \quad \vec{b}_{2}=\frac{A-\lambda_{1} I}{\lambda_{2}-\lambda_{1}} \vec{u}(0) .
\end{aligned}
$$

Definition 1 (node)

A node is defined to be an equilibrium point $\left(x_{0}, y_{0}\right)$ such that

1. Either $\lim _{t \rightarrow \infty}(x(t), y(t))=\left(x_{0}, y_{0}\right)$ or else $\lim _{t \rightarrow-\infty}(x(t), y(t))=$ $\left(x_{0}, y_{0}\right)$, for all initial conditions $\left(x(0), y(0)\right.$ close to $\left(x_{0}, y_{0}\right)$.
2. For each initial condition $(x(0), y(0))$ near $\left(x_{0}, y_{0}\right)$, there exists a straight line L through $\left(x_{0}, y_{0}\right)$ such that $(x(t), y(t))$ is tangent at $t=\infty$ to L. Precisely, L has a tangent vector \vec{v} and $\lim _{t \rightarrow \infty}\left(x^{\prime}(t), y^{\prime}(t)\right)=\boldsymbol{c} \overrightarrow{\boldsymbol{v}}$ for some constant \boldsymbol{c}.

Node Subclassification

Proper Node. Also called a Star Node.
Matrix \boldsymbol{A} is required to have two eigenpairs $\left(\boldsymbol{\lambda}_{1}, \overrightarrow{\boldsymbol{v}}_{1}\right),\left(\boldsymbol{\lambda}_{2}, \vec{v}_{2}\right)$ with $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{2}$. Then $\overrightarrow{\boldsymbol{u}}(\mathbf{0})$ in $\boldsymbol{R}^{2}=\operatorname{span}\left(\overrightarrow{\boldsymbol{v}}_{1}, \overrightarrow{\boldsymbol{v}}_{\mathbf{2}}\right)$ implies

$$
\vec{u}(0)=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \quad \text { and } \quad \vec{a}_{2}=\left(A-\lambda_{1} I\right) \vec{u}(0)=\overrightarrow{0}
$$

Therefore, $\vec{u}(t)=e^{\lambda_{1} t} \vec{a}_{1}$ implies trajectories are tangent to the line through $(0,0)$ in direction $\overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{a}}_{1} /\left|\vec{a}_{1}\right|$.

Because $\overrightarrow{\boldsymbol{u}}(\mathbf{0})=\overrightarrow{\boldsymbol{a}}_{\mathbf{1}}$ is arbitrary, $\overrightarrow{\boldsymbol{v}}$ can be any direction, which explains the star-like phase portrait.

Node Subclassification

Improper Node with One Eigenpair

The non-diagonalizable case is also called a Degenerate Node.
Matrix \boldsymbol{A} is required to have just one eigenpair $\left(\boldsymbol{\lambda}_{1}, \vec{v}_{1}\right)$ and $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{2}$. Then $\overrightarrow{\boldsymbol{u}}^{\prime}(t)=\left(\vec{a}_{2}+\lambda_{1} \vec{a}_{1}+\boldsymbol{t} \boldsymbol{\lambda}_{1} \vec{a}_{2}\right) e^{\lambda_{1} t}$ implies $\overrightarrow{\boldsymbol{u}}^{\prime}(t) /\left|\overrightarrow{\boldsymbol{u}}^{\prime}(t)\right| \approx \vec{a}_{2} /\left|\vec{a}_{2}\right|$ at $|t|=\infty$. Matrix $\boldsymbol{A}-\lambda_{1} \boldsymbol{I}$ has rank 1, hence

$$
\operatorname{Image}\left(A-\lambda_{1} I\right)=\operatorname{span}(\vec{v})
$$

for some nonzero vector $\overrightarrow{\boldsymbol{v}}$. Then $\overrightarrow{\boldsymbol{a}}_{2}=\left(\boldsymbol{A}-\boldsymbol{\lambda}_{\mathbf{1}} \boldsymbol{I}\right) \overrightarrow{\boldsymbol{u}}(\mathbf{0})$ is a multiple of $\overrightarrow{\boldsymbol{v}}$.
Trajectory $\overrightarrow{\boldsymbol{u}}(\boldsymbol{t})$ is tangent to the line through $(0,0)$ with direction $\overrightarrow{\boldsymbol{v}}$.

Node Subclassification

Improper Node with Distinct Eigenvalues

The first possibility is when matrix \boldsymbol{A} has real eigenvalues with $\boldsymbol{\lambda}_{2}<\boldsymbol{\lambda}_{1}<0$. The second possibility $\boldsymbol{\lambda}_{2}>\boldsymbol{\lambda}_{1}>\boldsymbol{0}$ is left to the reader.
Then $\overrightarrow{\boldsymbol{u}}^{\prime}(\boldsymbol{t})=\lambda_{1} \vec{b}_{1} e^{\lambda_{1} t}+\lambda_{2} \vec{b}_{2} e^{\lambda_{2} t}$ implies $\overrightarrow{\boldsymbol{u}}^{\prime}(\boldsymbol{t}) /\left|\overrightarrow{\boldsymbol{u}}^{\prime}(\boldsymbol{t})\right| \approx \vec{b}_{1} /\left|\vec{b}_{1}\right|$ at $t=\infty$. In terms of eigenpairs $\left(\lambda_{1}, \vec{v}_{1}\right),\left(\lambda_{2}, \vec{v}_{2}\right)$, we compute $\vec{b}_{1}=c_{1} \vec{v}_{1}$ and $\vec{b}_{2}=c_{2} \vec{v}_{2}$ where $\vec{u}(0)=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$.

Trajectory $\overrightarrow{\boldsymbol{u}}(\boldsymbol{t})$ is tangent to the line through $(0,0)$ with direction $\overrightarrow{\boldsymbol{v}}_{1}$.

Attractor and Repeller

An equilibrium point is called an attractor provided solutions starting nearby limit to the point as $\boldsymbol{t} \rightarrow \infty$.

A repeller is an equilibrium point such that solutions starting nearby limit to the point as $t \rightarrow-\infty$.

Terms like attracting node and repelling spiral are defined analogously.

Almost linear systems

A nonlinear planar autonomous system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$ is called almost linear at equilibrium point $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{0}$ if there is a 2×2 matrix \boldsymbol{A} and a vector function $\overrightarrow{\mathrm{g}}$ such that

$$
\begin{aligned}
& \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}})=A\left(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right)+\overrightarrow{\mathrm{g}}(\overrightarrow{\mathbf{u}}) \\
& \lim _{\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow 0} \frac{\|\overrightarrow{\mathrm{~g}}(\overrightarrow{\mathbf{u}})\|}{\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\|}=0
\end{aligned}
$$

The function $\overrightarrow{\mathbf{g}}$ has the same smoothness as $\overrightarrow{\mathbf{f}}$.
We investigate the possibility that a local phase diagram at $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}_{0}$ for the nonlinear system $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(t))$ is graphically identical to the one for the linear system $\overrightarrow{\mathbf{y}}^{\prime}(\boldsymbol{t})=$ $\boldsymbol{A} \overrightarrow{\mathbf{y}}(\boldsymbol{t})$ at $\overrightarrow{\mathbf{y}}=\mathbf{0}$.

Jacobian Matrix \qquad Almost linear system results will apply to all isolated equilibria of $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(\boldsymbol{t}))$. This is accomplished by expanding f in a Taylor series about each equilibrium point, which implies that the ideas are applicable to different choices of \boldsymbol{A} and \boldsymbol{g}, depending upon which equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ was considered.

Define the Jacobian matrix of $\overrightarrow{\mathbf{f}}$ at equilibrium point $\overrightarrow{\mathbf{u}}_{0}$ by the formula

$$
J=\operatorname{aug}\left(\partial_{1} \overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathrm{u}}_{0}\right), \partial_{2} \overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathrm{u}}_{0}\right)\right)
$$

Taylor's theorem for functions of two variables says that

$$
\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}})=J\left(\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right)+\overrightarrow{\mathrm{g}}(\overrightarrow{\mathbf{u}})
$$

where $\overrightarrow{\mathrm{g}}(\overrightarrow{\mathbf{u}}) /\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow \mathbf{0}$ as $\left\|\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{u}}_{0}\right\| \rightarrow \mathbf{0}$. Therefore, for $\overrightarrow{\mathrm{f}}$ continuously differentiable, we may always take $\boldsymbol{A}=\boldsymbol{J}$ to obtain from the almost linear system $\overrightarrow{\mathbf{u}}^{\prime}(t)=\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{u}}(t))$ its linearization $y^{\prime}(t)=A \overrightarrow{\mathbf{y}}(t)$.

