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Transfer of Local Linearized Phase Portrait

THEOREM.
Let Uy be an equilibrium point of the nonlinear dynamical system

o' (t) = f(d(t)).

Assume the Jacobian of f(i@) at & = i, is matrix A and @ (t) = AU(t) has linear
classification saddle, node, center or spiral at its equilibrium point (0, 0).

Then the nonlinear system @' (t) = f(@(t)) at equilibrium point = T, has the same
classification, with the following exceptions:

If the linear classification at (0, 0) for u’(t) = A{(t) is a node or a center,
then the nonlinear classification at i = 1, might be a spiral.

The exceptions in terms of roots of the characteristic equation: A; = A (real equal roots)
and Ay = Xy = bt (b > 0, purely complex roots).



Transfer of Local Linearized Stability

THEOREM.
Let Uy be an equilibrium point of the nonlinear dynamical system

() = £(d(t)).

Assume the Jacobian of F(ﬁ) at U = Uj is matrix A. Then the nonlinear system
i'(t) = f(d(t)) at @ = Uy has the same stability as @(t) = AU(t) with the
following exception:

If the linear classification at (0, 0) for @ (t) = At(t) is a center, then the
nonlinear classification at i = 1y might be either stable or unstable.



How to Classify Linear Equilibria

e Assume the linear systemis 2 X 2,0’ = Au.
e Compute the roots A;, A, of the characteristic equation of A.
e Find the Euler solution atoms A (t), A5(t) for these two roots.

e [f the atoms have sine and cosine factors, then a rotation is implied and the classification
is either a center or spiral. Pure harmonic atoms [no exponentials] imply a center,
otherwise it’s a spiral.

e [f the atoms are exponentials, then the classification is a non-rotation, a node or saddle.
Take limits of the atoms at £ — oo and also ¢ —= —oo. If one limit answer is
A; = A, = 0, then it’s a node, otherwise it’s a saddle.



Justification of the Classification Method
The Cayley-Hamilton-Ziebur theorem implies that the general solution of

u = Ad

is the equation
where A, A, are the Euler solution atoms corresponding to the roots Ay, A, of the charac-

teristic equation of A. Although d;, d, are not arbitrary, the classification only depends on
the roots and hence only on the atoms. We construct examples of the behavior by choosing

(_i:1, 32, for example,
- 1 - 0

If the atoms were cos t, sin t, then the solution by C-H-Z would be # = cost, y =
sin t. Analysis of the trajectory shows a circle, hence we expect a center at (0, 0). Similar
examples can be invented for the other cases of a spiral, saddle, or node, by considering
possible pairs of atoms.



Three Examples

Consider the nonlinear systems and selected equilibrium points. The third example has
infinitely many equilibria.

[—
Spiral-Saddle {z, — ] fi’; Equilibria (1, —1), (—1, 1)
r = vy, o
Center-Saddle g = —20x + 5z°. Equilibria (0, 0), (2,0), (—2,0)

! 3sin(x) + vy,

Node-Saddle { o sin(z) + 24. Equilibria (27, 0), (7, 0)



Spiral-saddle Example

The nonlinear function and Jacobian are

fa = (77%), A@n=(_30)-

Then A(1, —1) = (_; (1)> and A(—1,1) = (; (1))

e The characteristic equations are A2 — X + 2 = 0 and A\> — XA — 2 = 0 with roots
q
% + % 71 and 2, —1, respectively.

e The Euler solution atoms for A(1, —1) are e/ cos(+/7t/2), e'/? sin(+/Tt/2).
Rotation implies a center or spiral. No pure harmonics, so it’s a spiral. The limit at

t = —oo is zero for both atoms, so it’s stable at minus infinity, implying unstable at
infinity.

e The atoms for A(—1, 1) are e*, e*. No rotation implies a node or saddle. Neither
the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Center-saddle Example

The nonlinear function and Jacobian are

= 0 1

Then A(0,0) = < _28 (1)> and A(%£2,0) = (48 (1))

e The characteristic equations are A2 + 20 = 0 and A? — 40 = 0 with roots £=+/201
and £=+/40, respectively.

e The Euler solution atoms for A (0, 0) are cos(+/20t), sin(+/20t). Rotation im-
plies a center or spiral. The atoms are pure harmonics, so it’s a center. The nonlinear
system can be a center or a spiral and either stable or unstable. The issue is decided by
a computer algebra system to be a center.

e The atoms for A(£2, 0) are e, e, where b = 1/40. No rotation implies a node
or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Node-saddle Example

The nonlinear function and Jacobian are

F(w’y):(3sinac—|—y>, A(w,y):(?)cosa: 1).

sin ¢ + 2y cosx 2

Then A(27,0) = (? ;) and A(m,0) = (:i’ ;)

e The characteristic equations are A> — 5\ + 5 = 0 and A? + A — 5 = 0 with roots
2(5+ +v/5) = 3.6,1.38and 1(—1 + v/21) = 1.79, —2.79, respectively.

e The Euler solution atoms for A(27, 0) are e, € witha > 0, b > 0. No rotation
implies a node or saddle. The atoms limit to zero at ¢ = — o0, so one end is stable,
which eliminates the saddle. It’s a node, unstable at infinity.

e The atoms for A(m, 0) are e, e®, where a > 0 and b < 0. No rotation implies

a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a
saddle.

e The two classifications and their stability transfers to the nonlinear system. The only
case when a node does not automatically transfer is the case of equal roots.



