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Transfer of Local Linearized Phase Portrait
THEOREM.
Let ~u0 be an equilibrium point of the nonlinear dynamical system

~u′(t) = ~f(~u(t)).

Assume the Jacobian of~f(~u) at ~u = ~u0 is matrix A and ~u′(t) = A~u(t) has linear
classification saddle, node, center or spiral at its equilibrium point (0, 0).

Then the nonlinear system ~u′(t) = ~f(~u(t)) at equilibrium point ~u = ~u0 has the same
classification, with the following exceptions:

If the linear classification at (0, 0) for ~u′(t) = A~u(t) is a node or a center,
then the nonlinear classification at ~u = ~u0 might be a spiral.

The exceptions in terms of roots of the characteristic equation: λ1 = λ2 (real equal roots)
and λ1 = λ2 = bi (b > 0, purely complex roots).



Transfer of Local Linearized Stability
THEOREM.
Let ~u0 be an equilibrium point of the nonlinear dynamical system

~u′(t) = ~f(~u(t)).

Assume the Jacobian of ~f(~u) at ~u = ~u0 is matrix A. Then the nonlinear system
~u′(t) = ~f(~u(t)) at ~u = ~u0 has the same stability as ~u′(t) = A~u(t) with the
following exception:

If the linear classification at (0, 0) for ~u′(t) = A~u(t) is a center, then the
nonlinear classification at ~u = ~u0 might be either stable or unstable.



How to Classify Linear Equilibria

• Assume the linear system is 2× 2, ~u′ = A~u.

• Compute the roots λ1, λ2 of the characteristic equation ofA.

• Find the Euler solution atomsA1(t),A2(t) for these two roots.

• If the atoms have sine and cosine factors, then a rotation is implied and the classification
is either a center or spiral. Pure harmonic atoms [no exponentials] imply a center,
otherwise it’s a spiral.

• If the atoms are exponentials, then the classification is a non-rotation, a node or saddle.
Take limits of the atoms at t = ∞ and also t = −∞. If one limit answer is
A1 = A2 = 0, then it’s a node, otherwise it’s a saddle.



Justification of the Classification Method
The Cayley-Hamilton-Ziebur theorem implies that the general solution of

~u′ = A~u

is the equation
~u(t) = A1(t)~d1 +A2(t)~d2

whereA1,A2 are the Euler solution atoms corresponding to the rootsλ1,λ2 of the charac-
teristic equation ofA. Although~d1,~d2 are not arbitrary, the classification only depends on
the roots and hence only on the atoms. We construct examples of the behavior by choosing
~d1, ~d2, for example,

~d1 =

(
1
0

)
, ~d2 =

(
0
1

)
.

If the atoms were cos t, sin t, then the solution by C-H-Z would be x = cos t, y =
sin t. Analysis of the trajectory shows a circle, hence we expect a center at (0, 0). Similar
examples can be invented for the other cases of a spiral, saddle, or node, by considering
possible pairs of atoms.



Three Examples

Consider the nonlinear systems and selected equilibrium points. The third example has
infinitely many equilibria.

Spiral–Saddle
{
x′ = x+ y,
y′ = 1− x2.

Equilibria (1,−1), (−1, 1)

Center–Saddle
{
x′ = y,
y′ = −20x+ 5x3.

Equilibria (0, 0), (2, 0), (−2, 0)

Node–Saddle
{
x′ = 3 sin(x) + y,
y′ = sin(x) + 2y.

Equilibria (2π, 0), (π, 0)



Spiral-saddle Example
The nonlinear function and Jacobian are

~f(x, y) =

(
x+ y
1− x2

)
, A(x, y) =

(
1 1
−2x 0

)
.

ThenA(1,−1) =

(
1 1
−2 0

)
andA(−1, 1) =

(
1 1
2 0

)
.

• The characteristic equations are λ2 − λ+ 2 = 0 and λ2 − λ− 2 = 0 with roots
1

2
± 1

2

√
7i and 2,−1, respectively.

• The Euler solution atoms for A(1,−1) are et/2 cos(
√
7t/2), et/2 sin(

√
7t/2).

Rotation implies a center or spiral. No pure harmonics, so it’s a spiral. The limit at
t = −∞ is zero for both atoms, so it’s stable at minus infinity, implying unstable at
infinity.

• The atoms for A(−1, 1) are e2t, e−t. No rotation implies a node or saddle. Neither
the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Center-saddle Example
The nonlinear function and Jacobian are

~f(x, y) =

(
y

−20x+ 5x3

)
, A(x, y) =

(
0 1

−20 + 15x2 0

)
.

ThenA(0, 0) =

(
0 1

−20 0

)
andA(±2, 0) =

(
0 1

40 0

)
.

• The characteristic equations are λ2+20 = 0 and λ2−40 = 0 with roots±
√
20i

and±
√
40, respectively.

• The Euler solution atoms for A(0, 0) are cos(
√
20t), sin(

√
20t). Rotation im-

plies a center or spiral. The atoms are pure harmonics, so it’s a center. The nonlinear
system can be a center or a spiral and either stable or unstable. The issue is decided by
a computer algebra system to be a center.

• The atoms forA(±2, 0) are ebt, e−bt, where b =
√
40. No rotation implies a node

or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Node-saddle Example
The nonlinear function and Jacobian are

~f(x, y) =

(
3 sinx+ y
sinx+ 2y

)
, A(x, y) =

(
3 cosx 1
cosx 2

)
.

ThenA(2π, 0) =

(
3 1
1 2

)
andA(π, 0) =

(
−3 1
−1 2

)
.

• The characteristic equations are λ2− 5λ+5 = 0 and λ2 +λ− 5 = 0 with roots
1

2
(5±

√
5) = 3.6, 1.38 and 1

2
(−1±

√
21) = 1.79,−2.79, respectively.

• The Euler solution atoms forA(2π, 0) are eat, ebt with a > 0, b > 0. No rotation
implies a node or saddle. The atoms limit to zero at t = −∞, so one end is stable,
which eliminates the saddle. It’s a node, unstable at infinity.

• The atoms for A(π, 0) are eat, ebt, where a > 0 and b < 0. No rotation implies
a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a
saddle.

• The two classifications and their stability transfers to the nonlinear system. The only
case when a node does not automatically transfer is the case of equal roots.


