The Corrected Trial Solution

 in
the Method of Undetermined Coefficients

- Definition of Related Atoms
- The Basic Trial Solution Method
- Symbols
- Superposition
- The Trial Solution with Fewest Atoms
- Two Correction Rules
- Correction Rule I
- Correction rule II
- Illustrations
- Observations
- A Shortcut for Correction Rule II

Definition of Related Atoms

A base atom is one of the terms $1, \cos b x, \sin b x, e^{a x}, e^{a x} \cos b x, e^{a x} \sin b x$. An atom equals \boldsymbol{x}^{n} times a base atom, for $\boldsymbol{n}=0,1,2,3 \ldots$
Atoms \boldsymbol{A} and \boldsymbol{B} are related if and only if their successive derivatives $\boldsymbol{A}, \boldsymbol{A}^{\prime}, \boldsymbol{A}^{\prime \prime}, \ldots, \boldsymbol{B}$, $\boldsymbol{B}^{\prime}, \boldsymbol{B}^{\prime \prime}, \ldots$ share a common atom.

Then \boldsymbol{x}^{3} is related to \boldsymbol{x} and \boldsymbol{x}^{101}, while \boldsymbol{x} is unrelated to $\boldsymbol{e}^{\boldsymbol{x}}, \boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ and $\boldsymbol{x} \sin \boldsymbol{x}$. Atoms $\boldsymbol{x} \sin \boldsymbol{x}$ and $\boldsymbol{x}^{3} \boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ are related, but the atoms $\cos 2 \boldsymbol{x}$ and $\sin \boldsymbol{x}$ are unrelated.

An easy way to detect related atoms:
Atom \boldsymbol{A} is related to atom B if and only if their base atoms are identical or else they would become identical by changing a sine to a cosine.

The Basic Trial Solution Method

The method is outlined here for an \boldsymbol{n} th order linear differential equation.

Undetermined Coefficients Trial Solution Method

Step 1. Let $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{n}} \boldsymbol{f}(\boldsymbol{x})$, where \boldsymbol{n} is the order of the differential equation. Extract all distinct atoms that appear in the derivatives $\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}^{\prime}(\boldsymbol{x})$, $g^{\prime \prime}(\boldsymbol{x}), \ldots$, then collect the distinct atoms so found into a list of k atoms. Multiply these atoms by undetermined coefficients d_{1}, \ldots, d_{k}, then add to define a trial solution y

Step 2. Substitute y into the differential equation.

Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for unknowns $d_{1}, d_{2}, \ldots, d_{k}$. Solve the equations. Any variables not appearing are set to zero.

Step 4. The trial solution y with evaluated coefficients $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \ldots, \boldsymbol{d}_{k}$ becomes the particular solution \boldsymbol{y}_{p}.

Symbols

The symbols $\boldsymbol{c}_{1}, \boldsymbol{c}_{\mathbf{2}}$ are reserved for use as arbitrary constants in the general solution \boldsymbol{y}_{h} of the homogeneous equation.

Symbols $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}, \ldots$ are reserved for use in the trial solution \boldsymbol{y} of the non-homogeneous equation. Abbreviations: $\boldsymbol{c}=$ constant, $\boldsymbol{d}=$ determined.

Superposition
The relation $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$ suggests solving $\boldsymbol{a} \boldsymbol{y}^{\prime \prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+\boldsymbol{c} \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ in two stages:
(a) Find \boldsymbol{y}_{h} as a linear combination of atoms computed by applying Euler's theorem to factors of the characteristic polynomial $a r^{2}+b r+c$.
(b) Apply the basic trial solution method to find \boldsymbol{y}_{p}.

- We expect to find two arbitrary constants $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$ in the solution \boldsymbol{y}_{h}, but in contrast, no arbitrary constants appear in \boldsymbol{y}_{p}.
- Calling $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}, \ldots$ undetermined coefficients is misleading, because in fact they are eventually determined.

The Trial Solution with Fewest Atoms

Undetermined coefficient theory computes a trial solution with fewest atoms, thereby eliminating superfluous symbols, which effects a reduction in the size of the algebra problem. In the case of the example $\boldsymbol{y}^{\prime \prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$, the theory computes a trial solution $y=d_{1}+d_{2} x+d_{3} x^{2}$, reducing the number of symbols from 5 to 3 .

In a general equation $\boldsymbol{a} \boldsymbol{y}^{\prime \prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+\boldsymbol{c y}=\boldsymbol{f}(\boldsymbol{x})$, the atoms in the trial solution \boldsymbol{y} are the atoms that appear in $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2} \boldsymbol{f}(\boldsymbol{x})$ plus all lower-power related atoms. Equivalently, the atoms are those extracted from the successive derivatives $\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}^{\prime}(\boldsymbol{x}), \boldsymbol{g}^{\prime \prime}(\boldsymbol{x}), \ldots$ For example, if $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$, then $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2}\left(\boldsymbol{x}^{2}\right)=\boldsymbol{x}^{4}$ and the list of derivatives is $\boldsymbol{x}^{4}, 4 \boldsymbol{x}^{3}, 12 \boldsymbol{x}^{2}, 24 x, 24$. Strip coefficients to identify the list of related atoms $1, \boldsymbol{x}$, $\boldsymbol{x}^{2}, \boldsymbol{x}^{3}, \boldsymbol{x}^{4}$. Alternatively, begin with the atoms in $\boldsymbol{g}(\boldsymbol{x})$, namely \boldsymbol{x}^{4}, and append all lower powered related atoms. Briefly, atom \boldsymbol{x}^{4} causes an append of related atoms $\mathbf{1}, \boldsymbol{x}, \boldsymbol{x}^{2}, \boldsymbol{x}^{3}$.

Two Correction Rules

The initial trial solution \boldsymbol{y} obtained by constructing atoms from $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{n}} \boldsymbol{f}(\boldsymbol{x})$ is not the trial solution with fewest atoms. It is a sum of terms which can be organized into groups of related atoms, and it is known that each group contains \boldsymbol{n} superfluous terms. The correction rules describe how to remove the superfluous terms, which produces the desired corrected trial solution with fewest possible atoms.

Correction Rule I

If some variable $\boldsymbol{d}_{\boldsymbol{p}}$ is missing after substitution Step 2, then the system of linear equations for $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{\boldsymbol{k}}$ fails to have a unique solution. In the language of linear algebra, a missing variable $\boldsymbol{d}_{\boldsymbol{p}}$ in the system of linear equations is a free variable, which implies the linear system in the unknowns $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{\boldsymbol{k}}$ has, among the three possibilities, infinitely many solutions.
A symbol \boldsymbol{d}_{p} appearing in a trial solution will be missing in Step 2 if and only if it multiplies an atom $\boldsymbol{A}(\boldsymbol{x})$ that is a solution of the homogeneous equation. Because $\boldsymbol{d}_{\boldsymbol{p}}$ will be a free variable [any missing variable is a free variable], to which we will assign value zero in Step 3, the term $\boldsymbol{d}_{p} \boldsymbol{A}(\boldsymbol{x})$ can be removed from the trial solution. We can do this in advance, to decrease the number of symbols in the trial solution.

Rule I. Remove all terms $d_{p} A(x)$ in the trial solution of Step 1 for which atom $A(x)$ is a solution of the homogeneous differential equation.

Correction Rule II

The trial solution always contains superfluous atoms, introduced by using $\boldsymbol{x}^{n} \boldsymbol{f}(\boldsymbol{x})$ to construct the trial solution instead of $\boldsymbol{f}(\boldsymbol{x})$. For example, the equation $\boldsymbol{y}^{\prime \prime}+\boldsymbol{y}=\boldsymbol{x}^{2}$ would have trial solution $\boldsymbol{y}=\boldsymbol{d}_{1}+\boldsymbol{d}_{2} \boldsymbol{x}+\boldsymbol{d}_{3} \boldsymbol{x}^{2}+\boldsymbol{d}_{4} \boldsymbol{x}^{3}+\boldsymbol{d}_{5} \boldsymbol{x}^{4}$, with atoms \boldsymbol{x}^{3} and \boldsymbol{x}^{4} superfluous, because $\boldsymbol{y}_{p}=x^{2}-2$. We could have replaced the 5 -term trial solution by 3 -termed trial solution $\boldsymbol{y}=d_{1}+d_{2} x+d_{3} x^{2}$. There is a rule for how to remove superfluous terms, which combines easily with Rule I:

Rule II. Terms removed from Rule I appear in groups of related atoms

$$
\boldsymbol{B}(x), \quad x \boldsymbol{B}(x), \quad \ldots, \quad x^{m} \boldsymbol{B}(x)
$$

where $\boldsymbol{B}(\boldsymbol{x})$ is a base atom, that is, an atom not containing a power of x. Rule I removes the first k of these atoms from the trial solution. Rule II removes the last $n-k$ of these atoms. The ones removed are called superfluous atoms.

An Illustration

Assume the differential equation has order $\boldsymbol{n}=2$ and the trial solution contains a sub-list of related atoms

$$
e^{2 x}, x e^{2 x}, x^{2} e^{2 x}, x^{3} e^{e x}
$$

Example 1

Assume $e^{2 x}$ is not a solution of the homogeneous equation.
Then Rule I removes no atoms $(\boldsymbol{k}=\mathbf{0})$ and Rule II removes the last $\mathbf{2}$ atoms ($\boldsymbol{n}-\boldsymbol{k}=$ $2-0=2$), resulting in the revised shorter atom sub-list

$$
e^{2 x}, x e^{2 x}
$$

Example 2

Assume $e^{2 x}$ is a solution of the homogeneous equation.
Then Rule I removes atom $e^{2 x}(\boldsymbol{k}=\mathbf{1})$ from the start of the list and Rule II removes $x^{3} e^{2 x}$ from the end of list $(n-k=2-1=1)$, resulting in the revised sub-list

$$
x e^{2 x}, x^{2} e^{2 x}
$$

Observations

\qquad

- Rule I and Rule II together imply that exactly \boldsymbol{n} atoms are removed from every complete sub-list of related atoms in the original trial solution.
- The \boldsymbol{n} atoms are removed from the two ends, killing \boldsymbol{k} from the beginning of the list and $\boldsymbol{n}-\boldsymbol{k}$ from the end of the list.
- Substitution of the trial solution into the differential equation creates a the system of linear algebraic equations for the undetermined coefficients $d_{1}, d_{2}, d_{3}, \ldots$, in which every symbol $\boldsymbol{d}_{\boldsymbol{j}}$ appears! There are no free variables and the total number of atoms used in \boldsymbol{y} cannot be reduced.
- The system of equations has the least possible dimension and a unique solution for the undetermined coefficients.

A Shortcut

Building the atom list from $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{n} \boldsymbol{f}(\boldsymbol{x})$ requires subsequent removal of \boldsymbol{n} atoms from each sub-list of related atoms. Building a short atom list from $\boldsymbol{f}(\boldsymbol{x})$ requires a subsequent append of atoms to each sub-list of related atoms. The second method, which requires less writing, is a shortcut recommended after learning the basic method of removing atoms.

The idea for appending the atoms is the realization that the factor \boldsymbol{x}^{n} used in $\boldsymbol{g}(\boldsymbol{x})=$ $\boldsymbol{x}^{n} \boldsymbol{f}(\boldsymbol{x})$ causes \boldsymbol{n} extra atoms to appear in a sub-list of related atoms. Here are the facts:

- If the first atom in the sublist, base atom \boldsymbol{B}, is a solution of the homogeneous differential equation, then it is removed. This causes the first of the \boldsymbol{n} appended atoms to be kept.
- If the first two atoms $\boldsymbol{B}, \boldsymbol{x} \boldsymbol{B}$ are solutions of the homogeneous differential equation, then both are removed. This causes the first two of the \boldsymbol{n} appended atoms to be kept.
- If the first three atoms $\boldsymbol{B}, \boldsymbol{x} \boldsymbol{B}, \boldsymbol{x}^{2} \boldsymbol{B}$ are solutions of the homogeneous differential equation, then all three are removed. This causes the first three of the \boldsymbol{n} appended atoms to be kept.

A Shortcut for Correction Rule II

Let a sub-list of related atoms be constructed from $f(x)$ instead of $g(x)=x^{n} f(x)$.
Each removal of an atom from the left causes an append of a related atom on the right.
An Example for $\boldsymbol{f}(\boldsymbol{x})=11.578 x^{3} e^{x}+22.1 \cos 2 x$ \qquad
Consider the sub-list constructed from atom $\boldsymbol{x}^{3} e^{x}$. The other atom $\cos \boldsymbol{x}$ is treated similarly. Assume $\boldsymbol{n}=3$ and $\boldsymbol{e}^{\boldsymbol{x}}, \boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ are homogeneous DE solutions.

