## The Basic Trial Solution Method

Outlined here is the method for a second order differential equation $a \boldsymbol{y}^{\prime \prime}+$ $b y^{\prime}+c y=f(x)$. The method applies unchanged for $n$th order equations.

Step 1. Repeatedly differentiate the atoms of $f(x)$ until no new atoms appear. Collect the distinct atoms so found into a list of $k$ atoms. Multiply these atoms by undetermined coefficients $d_{1}, d_{2}, \ldots, d_{k}$, then add, defining trial solution $y$.
Step 2. Substitute $y$ into the differential equation.
Fixup Rule I. If some variable $\boldsymbol{d}_{p}$ is missing in the equation, then step 2 fails. Correct the trial solution as follows. Variable $d_{p}$ appears in $\boldsymbol{y}$ as term $\boldsymbol{d}_{p} \boldsymbol{A}$, where $\boldsymbol{A}$ is an atom. Multiply $\boldsymbol{A}$ and all its related atoms $\boldsymbol{B}$ by $\boldsymbol{x}$. The modified expression $\boldsymbol{y}$ is called a corrected trial solution. Repeat step 2 until the equation contains all of the variables $d_{1}, \ldots, d_{k}$.

Step 3. Match coefficients of atoms left and right to write out linear algebraic equations for $d_{1}, d_{2}, \ldots, d_{k}$. Solve the equations for the unique solution.
Step 4. The corrected trial solution $y$ with evaluated coefficients $d_{1}, d_{2}, \ldots, d_{k}$ becomes the particular solution $y_{p}$.

## Symbols

The symbols $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$ are reserved for use as arbitrary constants in the general solution $\boldsymbol{y}_{h}$ of the homogeneous equation. Symbols $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}, \ldots$ are reserved for use in the trial solution $\boldsymbol{y}$ of the non-homogeneous equation. Abbreviations: $\boldsymbol{c}=$ constant, $\boldsymbol{d}=$ determined.

## Superposition

The relation $\boldsymbol{y}=\boldsymbol{y}_{h}+\boldsymbol{y}_{p}$ suggests solving $\boldsymbol{a} \boldsymbol{y}^{\prime \prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+\boldsymbol{c y}=\boldsymbol{f}(\boldsymbol{x})$ in two stages:
(a) Apply the linear equation recipe to find $\boldsymbol{y}_{h}$.
(b) Apply the basic trial solution method to find $\boldsymbol{y}_{p}$.

We expect to find two arbitrary constants $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$ in the solution $\boldsymbol{y}_{h}$, but in contrast, no arbitrary constants appear in $\boldsymbol{y}_{p}$. Calling $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}, \ldots$ undetermined coefficients is misleading, because in fact they are eventually determined.

## Fixup rule II

The rule predicts the corrected trial solution $\boldsymbol{y}$ without having to substitute $\boldsymbol{y}$ into the differential equation.

- Write down $\boldsymbol{y}_{h}$, the general solution of homogeneous equation $\boldsymbol{a} \boldsymbol{y}^{\prime \prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+$ $c \boldsymbol{y}=0$, having arbitrary constants $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$. Create the corrected trial solution $\boldsymbol{y}$ iteratively, as follows.
- Cycle through each term $\boldsymbol{d}_{\boldsymbol{p}} \boldsymbol{A}$, where $\boldsymbol{A}$ is a atom. If $\boldsymbol{A}$ is also an atom appearing in $y_{h}$, then multiply $d_{p} A$ and each related atom term $d_{q} B$ by $\boldsymbol{x}$. Other terms appearing in $\boldsymbol{y}$ are unchanged.
- Repeat until each term $\boldsymbol{d}_{\boldsymbol{p}} \boldsymbol{A}$ has atom $\boldsymbol{A}$ distinct from all atoms appearing in homogeneous solution $\boldsymbol{y}_{h}$. The modified expression $\boldsymbol{y}$ is called the corrected trial solution.


## Fixup rule III

The rule predicts the corrected trial solution $\boldsymbol{y}$ without substituting it into the differential equation. This iterative algebraic method uses the roots of the characteristic equation to create $\boldsymbol{y}$.

- Write down the roots of the characteristic equation. Let $\boldsymbol{L}$ denote the list of distinct atoms for these roots.
- Cycle through each term $d_{p} \boldsymbol{A}$, where $\boldsymbol{A}$ is a atom. If $\boldsymbol{A}$ appears in list $\boldsymbol{L}$, then multiply $\boldsymbol{d}_{p} \boldsymbol{A}$ and each related atom term $\boldsymbol{d}_{q} \boldsymbol{B}$ by $\boldsymbol{x}$. Other terms appearing in $\boldsymbol{y}$ are unchanged.
- Repeat until the atom $\boldsymbol{A}$ in an arbitrary term $\boldsymbol{d}_{\boldsymbol{p}} \boldsymbol{A}$ of $\boldsymbol{y}$ does not appear in list $\boldsymbol{L} .{ }^{a}$ The modified expression $\boldsymbol{y}$ is called the corrected trial solution.

[^0]
## Fixup rule IV

The rule predicts the corrected trial solution $\boldsymbol{y}$ without substituting it into the differential equation. This algebraic method uses the roots of the characteristic equation to create $\boldsymbol{y}$.

- Write down the roots of the characteristic equation as a list $\boldsymbol{R}$, according to multiplicity.
- Let $\boldsymbol{G}$ denote a largest group of related atom terms in $\boldsymbol{y}$ with first atom $\boldsymbol{A}$. If $\boldsymbol{R}$ contains a root $\boldsymbol{r}$ of multiplicity $\boldsymbol{s}$, and an atom $\boldsymbol{B}$ for $\boldsymbol{r}$ is related to atom $\boldsymbol{A}$, then multiply all terms of $\boldsymbol{G}$ by $\boldsymbol{x}^{s}$. If no root in $\boldsymbol{R}$ has atom related to $\boldsymbol{A}$, then no action is taken.
- Repeat the previous step for all groups of related atoms in $\boldsymbol{y}$. The modified expression $\boldsymbol{y}$ is called the corrected trial solution.


[^0]:    ${ }^{a}$ The number $s$ of repeats for initial term $\boldsymbol{d}_{\boldsymbol{p}} \boldsymbol{A}$ equals the multiplicity of the root $\boldsymbol{r}$ which created atom $\boldsymbol{A}$ in list $\boldsymbol{L}$.

