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1.5 Phase Line and Bifurcation Diagrams

Technical publications may use special diagrams to display qualitative
information about the equilibrium points of the differential equation

y′(x) = f(y(x)).(1)

The right side of this equation is independent of x, hence there are no
external control terms that depend on x. Due to the lack of external
controls, the equation is said to be self-governing or autonomous.

A phase line diagram for the autonomous equation y′ = f(y) is a line
segment with labels sink, source or node, one mark and label for each
root y of f(y) = 0, i.e., each equilibrium; see Figure 15. A phase line
diagram summarizes the contents of a direction field and all equilibrium
solutions. It is used to draw threaded curves across the graph window,
producing a phase portrait for y′ = f(y).

The function f must be one-signed on the interval between adjacent
equilibrium points, because f(y) = 0 means y is an equilibrium point.
For this reason, a sign + or − is written on a phase line diagram between
each pair of adjacent equilibria.

− + − −
y2y1y0

source nodesink

Figure 15. A phase line diagram.

The labels sink, source, node are borrowed from the theory of fluids
and they have the following special definitions:5

Sink y = y0 The equilibrium y = y0 attracts nearby solutions at
x = ∞: for some H > 0, |y(0) − y0| < H implies
|y(x)− y0| decreases to 0 as x→∞.

Source y = y1 The equilibrium y = y1 repels nearby solutions at
x = ∞: for some H > 0, |y(0) − y1| < H implies
that |y(x)− y1| increases as x→∞.

Node y = y2 The equilibrium y = y2 is neither a sink nor a source.

Drain and Spout

In fluids, source means fluid is created and sink means fluid is lost. A
memory device for these concepts is the kitchen water spout, which is
the source, and the kitchen drain, which is the sink.

5It is for the reader’s geometric intuition that this text requires monotonic behavior
in the definition of a sink. In applied literature a sink is defined by limx→∞ |y(x)−y0| =
0, an easy transition for most readers, although unnecessarily abstract. See page 54
for definitions of attracting and repelling equilibria.
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Figure 16. A source or a spout.

A water spout from a kitchen faucet or a spray-can is a source. Pencil traces

in a figure represent flow lines in the fluid.

Figure 17. A sink or a funnel.

A funnel rotated 90 degrees has the shape of a sink. A drain in the kitchen

sink has the same geometry. The lines drawn in a funnel figure can be visualized

as traces of flow lines or dust particles in the fluid, going down the drain.

Figure 18. Video replay in reverse time.

A video of a funnel or sink played backwards looks like a source or spout.
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Drawing Phase Portraits

A phase line diagram is used to draw a phase portrait of threaded
solutions and equilibrium solutions by using the three rules below.

1. Equilibrium solutions are horizontal lines in the phase
diagram.

2. Threaded solutions of y′ = f(y) don’t cross.6 In par-
ticular, they don’t cross equilibrium solutions.

3. A threaded non-equilibrium solution that starts at x =
0 at a point y0 must be increasing if f(y0) > 0, and
decreasing if f(y0) < 0.

To justify 3, let y1(x) be a solution with y′1(x) = f(y1(x)) either positive
or negative at x = 0. If y′1(x1) = 0 for some x1 > 0, then let c = y1(x1)
and define equilibrium solution y2(x) = c. Then solution y1 crosses the
equilibrium solution y2 at x = x1, violating rule 2.

y2 node

sink

sourcey0

y1

Figure 19. A phase portrait for an autonomous equation y′ = f(y).

The graphic is drawn directly from phase line diagram Figure 15, using rules

1, 2, 3. While not a replica of an accurately constructed computer graphic,

the general look of threaded solutions is sufficient for intuition. Labels source,

sink, node are essential. Alternate labels: spout, funnel, node.

Stability Test

The terms stable equilibrium and unstable equilibrium refer to
the predictable plots of nearby solutions. The term stable means that
solutions that start near the equilibrium will stay nearby as x → ∞.
The term unstable means not stable. Therefore, a sink is stable and a
source is unstable.

6In normal applications, solutions to y′ = f(y) will not cross one another. Tech-
nically, this requires uniqueness of solutions to initial value problems, satisfied for
example if f and f ′ are continuous, because of the Picard-Lindelöf theorem.
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Definition 7 (Stable Equilibrium)
An equilibrium y0 is stable provided for given ε > 0 there exists some
H > 0 such that |y(0) − y0| < H implies y(x) exists for x ≥ 0 and
|y(x)− y0| < ε.

The solution y = y(0)ekx of the equation y′ = ky exists for x ≥ 0.
Properties of exponentials justify that the equilibrium y = 0 is a sink for
k < 0, a source for k > 0 and just stable for k = 0.

The stability test below in Theorem 3 is motivated by the vector cal-
culus results Div(P) < 0 for a sink and Div(P) > 0 for a source, where
P is the velocity field of the fluid and Div is divergence. Justification is
postponed to page 60.

Theorem 3 (Stability and Instability Conditions)
Let f and f ′ be continuous. The equation y′ = f(y) has a sink at y = y0
provided f(y0) = 0 and f ′(y0) < 0. An equilibrium y = y1 is a source
provided f(y1) = 0 and f ′(y1) > 0. There is no test when f ′ is zero at an
equilibrium. The no-test case can sometimes be decided by an additional
test:

(a) Equation y′ = f(y) has a sink at y = y0 provided f(y) changes sign
from positive to negative at y = y0.

(b) Equation y′ = f(y) has a source at y = y0 provided f(y) changes sign
from negative to positive at y = y0.

Phase Line Diagram for the Logistic Equation

The model logistic equation y′ = (1 − y)y is used to produce the phase
line diagram in Figure 20. The logistic equation is discussed on page 6,
in connection with the Malthusian population equation y′ = ky. The
letters S and U are used for a stable sink and an unstable source, while
N is used for a node. For computational details, see Example 30, page
57.

y = 1y = 0
− +

source sink

−
SU

Figure 20. A phase line diagram.

The equation is y′ = (1− y)y.

The equilibrium y = 0 is an unstable source and equilibrium y = 1 is a stable

sink.

Arrowheads are used to display the repelling or attracting nature of
the equilibrium.
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Definition 8 (Attracting and Repelling Equilibria)
An equilibrium y = y0 is attracting provided limx→∞ y(x) = y0 for all
initial data y(0) with 0 < |y(0) − y0| < h and h > 0 sufficiently small.
An equilibrium y = y0 is repelling provided limx→−∞ y(x) = y0 for all
initial data y(0) with 0 < |y(0)− y0| < h and h > 0 sufficiently small.

Direction Field Plots

A direction field for an autonomous differential equation y′ = f(y) can
be constructed in two steps.

Step 1. Draw grid points and line segments along the y-axis.

Step 2. Duplicate the y-axis direction field at even divisions
along the x-axis.

Duplication is justified because y′ = f(y) does not depend on x, which
means that the slope assigned to a line segment at grid points (0, y0) and
(x0, y0) are identical.

The following facts are assembled for reference:

Fact 1. An equilibrium is a horizontal line. It is stable if all solutions
starting near the line remain nearby as x→∞.

Fact 2. Solutions don’t cross. In particular, any solution that starts
above or below an equilibrium solution must remain above
or below.

Fact 3. A solution curve of y′ = f(y) rigidly moved to the left or
right will remain a solution, i.e., the translate y(x− x0) of
a solution to y′ = f(y) is also a solution.

A phase line diagram is merely a summary of the solution behavior in a
direction field. Conversely, an independently made phase line diagram
can be used to enrich the detail in a direction field.

Fact 3 is used to make additional threaded solutions from an initial
threaded solution, by translation. Threaded solutions with turning points
are observed to have translations with turning points marching mono-
tonically to the left, or to the right.

Bifurcations

The phase line diagram has a close relative called a bifurcation dia-
gram. The purpose of the diagram is to display qualitative information
about equilibria, across all equations y′ = f(y), obtained by varying
physical parameters appearing implicitly in f . In the simplest cases,
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each parameter change to f(y) produces one phase line diagram and
the two-dimensional stack of these phase line diagrams is the bifurcation
diagram (see Figure 21).

Fish Harvesting. To understand the reason
for such diagrams, consider a private lake with fish
population y(t). The population is harvested at
rate k fish per year. A suitable sample logistic
model is

dy

dt
= y(4− y)− k

where the constant harvesting rate k is allowed to change. Given some
relevant values of k, a biologist would produce corresponding phase line
diagrams, then display them by stacking, to obtain a two-dimensional
diagram, like Figure 21.

N

y

k
U

S
Figure 21. A bifurcation diagram.
The fish harvesting diagram consists of stacked
phase-line diagrams.
Legend: U=Unstable, S=Stable, N=node.

In the figure, the vertical axis represents initial values y(0) and the hor-
izontal axis represents the harvesting rate k (axes can be swapped).

The bifurcation diagram shows how the number of equilibria and their
classifications sink, source and node change with the harvesting rate.

Shortcut methods exist for drawing bifurcation diagrams and these meth-
ods have led to succinct diagrams that remove the phase line diagram
detail. The basic idea is to eliminate the vertical lines in the plot, and
replace the equilibria dots by a curve, essentially obtained by connect-
the-dots. In current literature, Figure 21 is generally replaced by the
more succinct Figure 22.

N

k

y

U

S

Figure 22. A succinct bifurcation diagram for
fish harvesting.
Legend: U=Unstable, S=Stable, N=node.

Stability and Bifurcation Points

Biologists call a fish population stable when the fish reproduce at a rate
that keeps up with harvesting. Bifurcation diagrams show how to stock
the lake and harvest it in order to have a stable fish population.
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A point in a bifurcation diagram where stability changes from stable to
unstable is called a bifurcation point, e.g., label N in Figure 22.

The upper curve in Figure 22 gives the equilibrium population sizes of a
stable fish population. Some combinations are obvious, e.g., a harvest of
2 thousand per year from an equilibrium population of about 4 thousand
fish. Less obvious is a sustainable harvest of about 4 thousand fish
with an equilibrium population of about 2 thousand fish, detected from
the portion of the curve near the bifurcation point.

Harvesting rates greater than the rate at the bifurcation point will result
in extinction. Harvesting rates less than this will also result in extinc-
tion, if the stocking size is less than the critical value realized on the
lower curve in the figure. These facts are justified solely from the phase
line diagram, because extinction means all solutions limit to y = 0.

Briefly, the lower curve gives the minimum stocking size and the
upper curve gives the limiting population or carrying capacity, for
a given harvesting rate k on the abscissa.

Examples

29 Example (No Test in Sink–Source Theorem 3) Find an example y′ =
f(y) which has an unstable node at y = 0 and no other equilibria.

Solution: Let f(y) = y2. The equation y′ = f(y) has an equilibrium at y = 0.
In Theorem 3, there is a no test condition f ′(0) = 0.

Suppose first that the nonzero solutions are known to be y = 1/(1/y(0) − x),
for example, by consulting a computer algebra system like maple:

dsolve(diff(y(x),x)=y(x)^2,y(x));

Solutions with y(0) < 0 limit to the equilibrium solution y = 0, but positive
solutions “blow up” before x = ∞ at x = 1/y(0). The equilibrium y = 0 is an
unstable node, that is, it is not a source nor a sink.

The same conclusions are obtained from basic calculus, without solving the
differential equation. The reasoning: y′ has the sign of y2, then y′ ≥ 0 implies
y(x) increases. The equilibrium y = 0 behaves like a source when y(0) > 0. For
y(0) < 0, again y(x) increases, but in this case the equilibrium y = 0 behaves
like a sink. Accordingly, y = 0 is not a source nor a sink, but a node.

30 Example (Phase Line Diagram) Verify the phase line diagram in Figure
23 for the logistic equation y′ = (1− y)y, using Theorem 3.

y = 1y = 0
− +

source sink

−
SU

Figure 23. Phase line diagram for y′ = (1− y)y.
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Solution: Let f(y) = (1− y)y. To justify Figure 23, there are three steps:

1. Find the equilibria. Answer: y = 0 and y = 1.

2. Find the signs PLUS and MINUS.

3. Apply Theorem 3 to show y = 0 is a source and y = 1 is a sink.

The plan is to first compute the equilibrium points.

(1− y)y = 0 Solving f(y) = 0 for equilibria.

y = 0, y = 1 Roots found.

The signs + and - appearing in Figure 20 are labels that mean f is positive
or negative on the interval between adjacent equilibria.

A sign of plus or minus is determined by the sign of f(x) for x between equilibria.
To justify this statement, suppose both signs occur, f(x1) > 0 and f(x2) < 0.
Then continuity of f implies f(x) = 0 for a point x between x1, x2, which is
impossible on an interval free of roots.

The method to determine the signs, plus or minus, then reduces to evaluation
of f(x) for an invented sample x chosen between two equilibria, for instance:

f(−1) = (y − y2)
∣∣
x=−1 = −2 The sign is MINUS. Chosen was x = −1,

which is in the interval −∞ < x < 0.

f(0.5) = (y − y2)
∣∣
x=0.5

= 0.25 The sign is PLUS. Chosen was x = 0.5,
which is in the interval 0 < x < 1.

f(2) = (y − y2)
∣∣
x=2

= −2 The sign is MINUS. Chosen was x = 2,
which is in the interval 1 < x <∞.

We will apply Theorem 3. The plan is to find f ′(y) and then evaluate f ′ at
each equilibrium. An alternative technique is to apply Theorem 3, part (a) or
(b), which is the method of choice in practise.

f ′(y) = (y − y2)′ Find f ′ from f(y) = (1− y)y.

= 1− 2y Derivative found.

f ′(0) = 1 Positive means it is a source (spout), by
Theorem 3.

f ′(1) = −1 Negative means it is a sink (funnel), by
Theorem 3.
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Sink or
Funnel

Source
or Spout

y = 0

y = 1

Figure 24. Phase portrait for y′ = (1− y)y.

Drawn from the phase line diagram of Example 30.

31 Example (Phase Portrait) Justify the phase portrait in Figure 24 for the
logistic equation y′ = (1− y)y, using the phase line diagram constructed in
Example 30.

Solution:

Drawing rules. The phase line diagram contains all essential information for
drawing threaded curves. Threaded solutions have to be either horizontal (an
equilibrium solution), increasing or decreasing. Optional is representation of
turning points.

Translations. Because translates of solutions are also solutions and solutions
are unique, then the drawing of an increasing or decreasing threaded curve
determines the shape of all nearby threaded curves. There is no option for
drawing nearby curves!

Explanation. The phase portrait is drawn by moving the phase line diagram
to the y-axis of the graph window 0 ≤ x ≤ 6, −0.5 ≤ y ≤ 2. The graph window
was selected by first including the equilibrium solutions y = 0 and y = 1, then
growing the window after an initial graph. Each equilibrium solution produces
a horizontal line, i.e., lines y = 0 and y = 1. The signs copied to the y-axis from
the phase line diagram tell us how to draw a threaded curve, either increasing
(PLUS) or decreasing (MINUS).

Labels. It is customary to use labels sink, source, node or the alternates
spout, funnel, node. Additional labels are Stable and Unstable. The only
stable geometry is a sink (funnel).

32 Example (Bifurcation Diagram) Verify the fish harvesting bifurcation di-
agram in Figure 21.

Solution: Let f(y) = y(4 − y) − k, where k is a parameter that controls the
harvesting rate per annum. A phase line diagram is made for each relevant value
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of k, by applying Theorem 3 to the equilibrium points. First, the equilibria are
computed, that is, the roots of f(y) = 0:

y2 − 4y + k = 0 Standard quadratic form of f(y) = 0.

y =
4±
√

42 − 4k

2
Apply the quadratic formula.

= 2 +
√

4− k, 2−
√

4− k Evaluate. Real roots exist only for 4−k ≥ 0.

In preparation to apply Theorem 3, the derivative f ′ is calculated and then
evaluated at the equilibria:

f ′(y) = (4y − y2 − k)′ Computing f ′ from f(y) = (4− y)y − k.

= 4− 2y Derivative found.

f ′(2 +
√

4− k) = −2
√

4− k Negative means a sink, by Theorem 3.

f ′(2−
√

4− k) = 2
√

4− k Positive means a source, by Theorem 3.

A typical phase line diagram then looks like Figure 15, page 51. In the ky-plane,
sources go through the curve y = 2 −

√
4− k and sinks go through the curve

y = 2 +
√

4− k. This justifies the bifurcation diagram in Figure 21, and also
Figure 22, except for the common point of the two curves at k = 4, y = 2.

At this common point, the differential equation is y′ = −(y−2)2. This equation
is studied in Example 29, page 57; a change of variable Y = 2 − y shows that
the equilibrium is a node.

Proofs and Details

Stability Test Proof: Let f and f ′ be continuous. It will be justified that
the equation y′ = f(y) has a stable equilibrium at y = y0, provided f(y0) = 0
and f ′(y0) < 0. The unstable case is left for the exercises.

We show that f changes sign at y = y0 from positive to negative, as follows,
hence the hypotheses of (a) hold. Continuity of f ′ and the inequality f ′(y0) < 0
imply f ′(y) < 0 on some small interval |y − y0| ≤ H . Therefore, f(y) > 0 =
f(y0) for y < y0 and f(y) < 0 = f(y0) for y > y0. This justifies that the
hypotheses of (a) apply. We complete the proof using only these hypotheses.

Global existence. It has to be established that some constant H > 0 exists,
such that |y(0)− y0| < H implies y(x) exists for x ≥ 0 and limx→∞ y(x) = y0.
To define H > 0, assume f(y0) = 0 and the change of sign condition f(y) > 0
for y0 −H ≤ y < y0, f(y) < 0 for y0 < y ≤ y0 +H.

Assume that y(x) exists as a solution to y′ = f(y) on 0 ≤ x ≤ h. It will
be established that |y(0) − y0| < H implies y(x) is monotonic and satisfies
|y(x)− y0| ≤ Hh for 0 ≤ x ≤ h.

The constant solution y0 cannot cross any other solution, therefore a solution
with y(0) > y0 satisfies y(x) > y0 for all x. Similarly, y(0) < y0 implies
y(x) < y0 for all x.

The equation y′ = f(y) dictates the sign of y′, as long as 0 < |y(x)− y0| ≤ H.
Then y(x) is either decreasing (y′ < 0) or increasing (y′ > 0) towards y0 on
0 ≤ x ≤ h, hence |y(x) − y0| ≤ H holds as long as the monotonicity holds.
Because the signs endure on 0 < x ≤ h, then |y(x)−y0| ≤ H holds on 0 ≤ x ≤ h.
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Extension to 0 ≤ x < ∞. Differential equations extension theory applied to
y′ = f(y) says that a solution satisfying on its domain |y(x)| ≤ |y0| + H may
be extended to x ≥ 0. This dispenses with the technical difficulty of showing
that the domain of y(x) is x ≥ 0. Unfortunately, details of proof for extension
results require more mathematical background than is assumed for this text;
see [?], which justifies the extension from the Picard theorem.

It remains to show that limx→∞ y(x) = y1 and y1 = y0. The limit equality fol-
lows because y is monotonic. The proof concludes when y1 = y0 is established.

Already, y = y0 is the only root of f(y) = 0 in |y − y0| ≤ H. This follows from
the change of sign condition in (a). It suffices to show that f(y1) = 0, because
then y1 = y0 by uniqueness.

To verify f(y1) = 0, apply the fundamental theorem of calculus with y′(x)
replaced by f(y(x)) to obtain the identity

y(n+ 1)− y(n) =

∫ n+1

n

f(y(x))dx.

The integral on the right limits as n→∞ to the constant f(y1), by the integral
mean value theorem of calculus, because the integrand has limit f(y1) at x =∞.
On the left side, the difference y(n+ 1)− y(n) limits to y1− y1 = 0. Therefore,
0 = f(y1).

The additional test stated in the theorem is the observation that internal to the
proof we used only the change of sign of f at y = y0, which was deduced from
the sign of the derivative f ′(y0). If f ′(y0) = 0, but the change of sign occurs,
then the details of proof still apply. The proof is complete.

Exercises 1.5

Stability-Instability Test. Find all
equilibria for the given differential
equation and then apply Theorem 3,
page 54, to obtain a classification of
each equilibrium as a source, sink or
node. Do not draw a phase line dia-
gram.

1. P ′ = (2− P )P

2. P ′ = (1− P )(P − 1)

3. y′ = y(2− 3y)

4. y′ = y(1− 5y)

5. A′ = A(A− 1)(A− 2)

6. A′ = (A− 1)(A− 2)2

7. w′ =
w(1− w)

1 + w2

8. w′ =
w(2− w)

1 + w4

9. v′ =
v(1 + v)

4 + v2

10. v′ =
(1− v)(1 + v)

2 + v2

Phase Line Diagram. Draw a phase
line diagram, with detail similar to
Figure 20.

11. y′ = y(2− y)

12. y′ = (y + 1)(1− y)

13. y′ = (y − 1)(y − 2)

14. y′ = (y − 2)(y + 3)

15. y′ = y(y − 2)(y − 1)

16. y′ = y(2− y)(y − 1)

17. y′ =
(y − 2)(y − 1)

1 + y2
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18. y′ =
(2− y)(y − 1)

1 + y2

19. y′ =
(y − 2)2(y − 1)

1 + y2

20. y′ =
(y − 2)(y − 1)2

1 + y2

Phase Portrait. Draw a phase por-
trait of threaded curves, using the
phase line diagram constructed in the
previous ten exercises.

21. y′ = y(2− y)

22. y′ = (y + 1)(1− y)

23. y′ = (y − 1)(y − 2)

24. y′ = (y − 2)(y + 3)

25. y′ = y(y − 2)(y − 1)

26. y′ = y(2− y)(y − 1)

27. y′ =
(y − 2)(y − 1)

1 + y2

28. y′ =
(2− y)(y − 1)

1 + y2

29. y′ =
(y − 2)2(y − 1)

1 + y2

30. y′ =
(y − 2)(y − 1)2

1 + y2

Bifurcation Diagram. Draw a stack
of phase line diagrams and construct
from it a succinct bifurcation diagram
with abscissa k and ordinate y(0).
Don’t justify details at a bifurcation
point.

31. y′ = (2− y)y − k

32. y′ = (3− y)y − k

33. y′ = (2− y)(y − 1)− k

34. y′ = (3− y)(y − 2)− k

35. y′ = y(2− y)(y − 1)− k

36. y′ = y(2− y)(y − 2)− k

37. y′ = y(y − 1)2 − k

38. y′ = y2(y − 1)− k

39. y′ = y(0.5− 0.001y)− k

40. y′ = y(0.4− 0.045y)− k

Details and Proofs. Supply details
for the following statements.

41. (Stability Test) Verify (b) of
Theorem 3, page 54, by altering
the proof given in the text for (a).

42. (Stability Test) Verify (b) of
Theorem 3, page 54, by means of
the change of variable x→ −x.

43. (Autonomous Equations) Let
y′ = f(y) have solution y(x) on
a < x < b. Then for any c, a <
c < b, the function z(x) = y(x+c)
is a solution of z′ = f(z).

44. (Autonomous Equations) The
method of isoclines can be ap-
plied to an autonomous equation
y′ = f(y) by choosing equally
spaced horizontal lines y = ci,
i = 1, . . . , k. Along each horizon-
tal line y = ci the slope is a con-
stant Mi = f(ci), and this deter-
mines the set of invented slopes
{Mi}ki=1 for the method of iso-
clines.


