Variation of Parameters

The initial value problem

$$
\begin{equation*}
y^{\prime}+p(x) y=r(x), \quad y\left(x_{0}\right)=y_{0}, \tag{3}
\end{equation*}
$$

where p and r are continuous in an interval containing $x=x_{0}$, has an explicit solution

$$
\begin{equation*}
y(x)=e^{-\int_{x_{0}}^{x} p(s) d s}\left(y_{0}+\int_{x_{0}}^{x} r(t) e^{-\int_{x_{0}}^{t} p(s) d s} d t\right) . \tag{4}
\end{equation*}
$$

Formula (4) is called variation of parameters, for historical reasons.

While (4) has some appeal, applications use the integrating factor method, which is developed with indefinite integrals for computational efficiency. No one memorizes (4); they remember and study the method.

Integrating Factor Identity

The technique called the integrating factor method uses the replacement rule

$$
\begin{equation*}
\text { The fraction } \frac{\left(e^{\int p(x) d x} Y\right)^{\prime}}{e^{\int p(x) d x}} \text { replaces } \quad Y^{\prime}+p(x) Y \text {. } \tag{5}
\end{equation*}
$$

The factor $e^{\int p(x) d x}$ in (5) is called an integrating factor.

The Integrating Factor Method

Standard
Form

Find W
Rewrite $y^{\prime}=f(x, y)$ in the form $y^{\prime}+p(x) y=r(x)$ where p, r are continuous. The method applies only in case this is possible.
Find a simplified formula for $W=e^{\int p(x) d x}$. The antiderivative $\int p(x) d x$ can be chosen conveniently.
Prepare for \quad Obtain the new equation $\frac{(W y)^{\prime}}{W}=r$ by replac-
Quadrature \quad ing the left side of $y^{\prime}+p(x) y=r(x)$ by equivaing the left side of $y^{\prime}+p(x) y=r(x)$ by equivalence (5).
Method of Clear fractions to obtain $(W y)^{\prime}=r W$. ApQuadrature ply the method of quadrature to get $W y=$ $\int r(x) W(x) d x+C$. Divide by W to isolate the explicit solution $y(x)$.

Equation (5) is central to the method, because it collapses the two terms $y^{\prime}+p y$ into a single term $(W y)^{\prime} / W$; the method of quadrature applies to $(W y)^{\prime}=r W$. The literature calls the exponential factor W an integrating factor and equivalence (5) a factorization of $Y^{\prime}+p(x) Y$.

