9.2 Eigenanalysis II

Discrete Dynamical Systems

The matrix equation

(1)
$$\mathbf{y} = \frac{1}{10} \begin{pmatrix} 5 & 4 & 0 \\ 3 & 5 & 3 \\ 2 & 1 & 7 \end{pmatrix} \mathbf{x}$$

predicts the state \mathbf{y} of a system initially in state \mathbf{x} after some fixed elapsed time. The 3×3 matrix A in (1) represents the **dynamics** which changes the state \mathbf{x} into state \mathbf{y} . Accordingly, an equation $\mathbf{y} = A\mathbf{x}$ is called a **discrete dynamical system** and A is called a **transition matrix**.

The eigenpairs of A in (1) are shown in *details* page 518 to be $(1, \mathbf{v}_1)$, $(1/2, \mathbf{v}_2)$, $(1/5, \mathbf{v}_3)$ where the eigenvectors are given by

(2)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 5/4 \\ 13/12 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}.$$

Market Shares. A typical application of discrete dynamical systems is telephone long distance company market shares x_1, x_2, x_3 , which are fractions of the total market for long distance service. If three companies provide all the services, then their market fractions add to one: $x_1 + x_2 + x_3 = 1$. The equation $\mathbf{y} = A\mathbf{x}$ gives the market shares of the three companies after a fixed time period, say one year. Then market shares after one, two and three years are given by the **iterates**

$$\mathbf{y}_1 = A\mathbf{x},
\mathbf{y}_2 = A^2\mathbf{x},
\mathbf{y}_3 = A^3\mathbf{x}.$$

Fourier's eigenanalysis model gives succinct and useful formulas for the iterates: if $\mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3$, then

$$\mathbf{y}_{1} = A\mathbf{x} = a_{1}\lambda_{1}\mathbf{v}_{1} + a_{2}\lambda_{2}\mathbf{v}_{2} + a_{3}\lambda_{3}\mathbf{v}_{3},$$

$$\mathbf{y}_{2} = A^{2}\mathbf{x} = a_{1}\lambda_{1}^{2}\mathbf{v}_{1} + a_{2}\lambda_{2}^{2}\mathbf{v}_{2} + a_{3}\lambda_{3}^{2}\mathbf{v}_{3},$$

$$\mathbf{y}_{3} = A^{3}\mathbf{x} = a_{1}\lambda_{1}^{3}\mathbf{v}_{1} + a_{2}\lambda_{2}^{3}\mathbf{v}_{2} + a_{3}\lambda_{3}^{3}\mathbf{v}_{3}.$$

The advantage of Fourier's model is that an iterate A^n is computed directly, without computing the powers before it. Because $\lambda_1 = 1$ and $\lim_{n \to \infty} |\lambda_2|^n = \lim_{n \to \infty} |\lambda_3|^n = 0$, then for large n

$$\mathbf{y}_n \approx a_1(1)\mathbf{v}_1 + a_2(0)\mathbf{v}_2 + a_3(0)\mathbf{v}_3 = \begin{pmatrix} a_1 \\ 5a_1/4 \\ 13a_1/12 \end{pmatrix}.$$

The numbers a_1 , a_2 , a_3 are related to x_1 , x_2 , x_3 by the equations $a_1 - a_2 - 4a_3 = x_1$, $5a_1/4 + 3a_3 = x_2$, $13a_1/12 + a_2 + a_3 = x_3$. Due to $x_1 + x_2 + x_3 = 1$, the value of a_1 is known, $a_1 = 3/10$. The three market shares after a long time period are therefore predicted to be 3/10, 3/8, 39/120. The reader should verify the identity $\frac{3}{10} + \frac{3}{8} + \frac{39}{120} = 1$.

Stochastic Matrices. The special matrix A in (1) is a stochastic matrix, defined by the properties

$$\sum_{i=1}^{n} a_{ij} = 1, \quad a_{kj} \ge 0, \quad k, j = 1, \dots, n.$$

The definition is memorized by the phrase each column sum is one. Stochastic matrices appear in **Leontief input-output models**, popularized by 1973 Nobel Prize economist Wassily Leontief.

Theorem 9 (Stochastic Matrix Properties)

Let A be a stochastic matrix. Then

- (a) If \mathbf{x} is a vector with $x_1 + \cdots + x_n = 1$, then $\mathbf{y} = A\mathbf{x}$ satisfies $y_1 + \cdots + y_n = 1$.
- (b) If \mathbf{v} is the sum of the columns of I, then $A^T\mathbf{v} = \mathbf{v}$. Therefore, $(1, \mathbf{v})$ is an eigenpair of A^T .
- (c) The characteristic equation $\det(A-\lambda I)=0$ has a root $\lambda=1$. All other roots satisfy $|\lambda|<1$.

Proof of Stochastic Matrix Properties:

- (a) $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j = \sum_{j=1}^{n} (\sum_{i=1}^{n} a_{ij}) x_j = \sum_{j=1}^{n} (1) x_j = 1.$
- **(b)** Entry j of $A^T \mathbf{v}$ is given by the sum $\sum_{i=1}^n a_{ij} = 1$.
- (c) Apply (b) and the determinant rule $\det(B^T) = \det(B)$ with $B = A \lambda I$ to obtain eigenvalue 1. Any other root λ of the characteristic equation has a corresponding eigenvector \mathbf{x} satisfying $(A \lambda I)\mathbf{x} = \mathbf{0}$. Let index j be selected such that $M = |x_j| > 0$ has largest magnitude. Then $\sum_{i \neq j} a_{ij} x_j + (a_{jj} \lambda) x_j = 0$ implies $\lambda = \sum_{i=1}^n a_{ij} \frac{x_j}{M}$. Because $\sum_{i=1}^n a_{ij} = 1$, λ is a convex combination of n complex numbers $\{x_j/M\}_{j=1}^n$. These complex numbers are located in the unit disk, a convex set, therefore λ is located in the unit disk. By induction on n, motivated by the geometry for n = 2, it is argued that $|\lambda| = 1$ cannot happen for λ an eigenvalue different from 1 (details left to the reader). Therefore, $|\lambda| < 1$.

Details for the eigenpairs of (1): To be computed are the eigenvalues and eigenvectors for the 3×3 matrix

$$A = \frac{1}{10} \left(\begin{array}{ccc} 5 & 4 & 0 \\ 3 & 5 & 3 \\ 2 & 1 & 7 \end{array} \right).$$

Eigenvalues. The roots $\lambda = 1, 1/2, 1/5$ of the characteristic equation $\det(A - \lambda I) = 0$ are found by these details:

$$\begin{aligned} 0 &= \det(A - \lambda I) \\ &= \begin{vmatrix} .5 - \lambda & .4 & 0 \\ .3 & .5 - \lambda & .3 \\ .2 & .1 & .7 - \lambda \end{vmatrix} \\ &= \frac{1}{10} - \frac{8}{10}\lambda + \frac{17}{10}\lambda^2 - \lambda^3 & \text{Expand by cofactors.} \\ &= -\frac{1}{10}(\lambda - 1)(2\lambda - 1)(5\lambda - 1) & \text{Factor the cubic.} \end{aligned}$$

The factorization was found by long division of the cubic by $\lambda - 1$, the idea born from the fact that 1 is a root and therefore $\lambda - 1$ is a factor (the Factor Theorem of college algebra). An answer check in maple:

```
with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
B:=evalm(A-lambda*diag(1,1,1));
eigenvals(A); factor(det(B));
```

Eigenpairs. To each eigenvalue $\lambda = 1, 1/2, 1/5$ corresponds one **rref** calculation, to find the eigenvectors paired to λ . The three eigenvectors are given by (2). The details:

Eigenvalue $\lambda = 1$.

$$A - (1)I = \begin{pmatrix} .5 - 1 & .4 & 0 \\ .3 & .5 - 1 & .3 \\ .2 & .1 & .7 - 1 \end{pmatrix}$$

$$\approx \begin{pmatrix} -5 & 4 & 0 \\ 3 & -5 & 3 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 3 & -5 & 3 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & -6 & 6 \\ 2 & 1 & -3 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & -6 & 6 \\ 0 & 13 & -15 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & -6 & 6 \\ 0 & 13 & -15 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{15}{13} \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{12}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & -\frac{12}{13} \\ 0 & 1 & -\frac{13}{13} \\ 0 & 0 & 0 \end{pmatrix}$$

$$\approx \mathbf{Swap rule.}$$

$$= \mathbf{rref}(A - (1)I)$$

An equivalent reduced echelon system is x - 12z/13 = 0, y - 15z/13 = 0. The free variable assignment is $z = t_1$ and then $x = 12t_1/13$, $y = 15t_1/13$. Let x = 1; then $t_1 = 13/12$. An eigenvector is given by x = 1, y = 4/5, z = 13/12. **Eigenvalue** $\lambda = 1/2$.

$$A - (1/2)I = \begin{pmatrix} .5 - .5 & .4 & 0 \\ .3 & .5 - .5 & .3 \\ .2 & .1 & .7 - .5 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 4 & 0 \\ 3 & 0 & 3 \\ 2 & 1 & 2 \end{pmatrix}$$

$$\approx \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \mathbf{rref}(A - .5I)$$
Multiply rule, factor=10.

Combination and multiply rules.

An eigenvector is found from the equivalent reduced echelon system y=0, x+z=0 to be x=-1, y=0, z=1.

Eigenvalue $\lambda = 1/5$.

$$A - (1/5)I = \begin{pmatrix} .5 - .2 & .4 & 0 \\ .3 & .5 - .2 & .3 \\ .2 & .1 & .7 - .2 \end{pmatrix}$$

$$\approx \begin{pmatrix} 3 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 5 \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$
Combination rule.
$$= \mathbf{rref}(A - (1/5)I)$$

An eigenvector is found from the equivalent reduced echelon system x + 4z = 0, y - 3z = 0 to be x = -4, y = 3, z = 1.

An answer check in maple:

```
with(linalg):
A:=(1/10)*matrix([[5,4,0],[3,5,3],[2,1,7]]);
eigenvects(A);
```

Coupled and Uncoupled Systems

The linear system of differential equations

(3)
$$x'_1 = -x_1 - x_3, x'_2 = 4x_1 - x_2 - 3x_3, x'_3 = 2x_1 - 4x_3,$$

is called **coupled**, whereas the linear system of growth-decay equations

(4)
$$y'_{1} = -3y_{1}, \\ y'_{2} = -y_{2}, \\ y'_{3} = -2y_{3},$$

is called **uncoupled**. The terminology uncoupled means that each differential equation in system (4) depends on exactly one variable, e.g., $y'_1 = -3y_1$ depends only on variable y_1 . In a coupled system, one of the differential equations must involve two or more variables.

Matrix characterization. Coupled system (3) and uncoupled system (4) can be written in matrix form, $\mathbf{x}' = A\mathbf{x}$ and $\mathbf{y}' = D\mathbf{y}$, with coefficient matrices

$$A = \begin{pmatrix} -1 & 0 & -1 \\ 4 & -1 & -3 \\ 2 & 0 & -4 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

If the coefficient matrix is **diagonal**, then the system is **uncoupled**. If the coefficient matrix is **not diagonal**, then one of the corresponding differential equations involves two or more variables and the system is called **coupled** or **cross-coupled**.

Solving Uncoupled Systems

An uncoupled system consists of independent growth-decay equations of the form u' = au. The recipe solution $u = ce^{at}$ then leads to the general solution of the system of equations. For instance, system (4) has general solution

(5)
$$y_1 = c_1 e^{-3t}, \\ y_2 = c_2 e^{-t}, \\ y_3 = c_3 e^{-2t},$$

where c_1 , c_2 , c_3 are **arbitrary constants**. The number of constants equals the dimension of the diagonal matrix D.

Coordinates and Coordinate Systems

If \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are three independent vectors in \mathbb{R}^3 , then the matrix

$$P = \mathbf{aug}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$$

is invertible. The columns \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of P are called a **coordinate** system. The matrix P is called a **change of coordinates**.

Every vector \mathbf{v} in \mathbb{R}^3 can be uniquely expressed as

$$\mathbf{v} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3.$$

The values t_1 , t_2 , t_3 are called the **coordinates** of **v** relative to the basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , or more succinctly, the **coordinates of v relative to** P.

Viewpoint of a Driver

The physical meaning of a coordinate system \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 can be understood by considering an auto going up a mountain road. Choose orthogonal \mathbf{v}_1 and \mathbf{v}_2 to give positions in the driver's seat and define \mathbf{v}_3 be the seat-back direction. These are **local coordinates** as viewed from the driver's seat. The road map coordinates x, y and the altitude z define the **global coordinates** for the auto's position $\mathbf{p} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$.

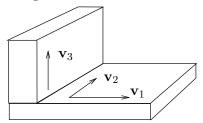


Figure 1. An auto seat.

The vectors $\mathbf{v}_1(t)$, $\mathbf{v}_2(t)$, $\mathbf{v}_3(t)$ form an orthogonal triad which is a local coordinate system from the driver's viewpoint. The orthogonal triad changes continuously in t.

Change of Coordinates

A coordinate change from \mathbf{y} to \mathbf{x} is a linear algebraic equation $\mathbf{x} = P\mathbf{y}$ where the $n \times n$ matrix P is required to be invertible $(\det(P) \neq 0)$. To illustrate, an instance of a change of coordinates from \mathbf{y} to \mathbf{x} is given by the linear equations

(6)
$$\mathbf{x} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \mathbf{y} \quad \text{or} \quad \begin{cases} x_1 & = y_1 + y_3, \\ x_2 & = y_1 + y_2 - y_3, \\ x_3 & = 2y_1 + y_3. \end{cases}$$

Constructing Coupled Systems

A general method exists to construct rich examples of coupled systems. The idea is to substitute a change of variables into a given uncoupled system. Consider a diagonal system $\mathbf{y}' = D\mathbf{y}$, like (4), and a change of variables $\mathbf{x} = P\mathbf{y}$, like (6). Differential calculus applies to give

(7)
$$\mathbf{x}' = (P\mathbf{y})' \\ = P\mathbf{y}' \\ = PD\mathbf{y} \\ = PDP^{-1}\mathbf{x}.$$

The matrix $A = PDP^{-1}$ is not triangular in general, and therefore the change of variables produces a **cross-coupled** system.

An illustration. To give an example, substitute into uncoupled system (4) the change of variable equations (6). Use equation (7) to obtain

(8)
$$\mathbf{x}' = \begin{pmatrix} -1 & 0 & -1 \\ 4 & -1 & -3 \\ 2 & 0 & -4 \end{pmatrix} \mathbf{x} \quad \text{or} \quad \begin{cases} x_1' = -x_1 - x_3, \\ x_2' = 4x_1 - x_2 - 3x_3, \\ x_3' = 2x_1 - 4x_3. \end{cases}$$

This **cross-coupled** system (8) can be solved using relations (6), (5) and $\mathbf{x} = P\mathbf{y}$ to give the general solution

(9)
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^{-3t} \\ c_2 e^{-t} \\ c_3 e^{-2t} \end{pmatrix}.$$

Changing Coupled Systems to Uncoupled

We ask this question, motivated by the above calculations:

Can every coupled system $\mathbf{x}'(t) = A\mathbf{x}(t)$ be subjected to a change of variables $\mathbf{x} = P\mathbf{y}$ which converts the system into a completely uncoupled system for variable $\mathbf{y}(t)$?

Under certain circumstances, this is true, and it leads to an elegant and especially simple expression for the general solution of the differential system, as in (9):

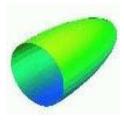
$$\mathbf{x}(t) = P\mathbf{y}(t).$$

The **task of eigenanalysis** is to simultaneously calculate from a cross-coupled system $\mathbf{x}' = A\mathbf{x}$ the change of variables $\mathbf{x} = P\mathbf{y}$ and the diagonal matrix D in the uncoupled system $\mathbf{y}' = D\mathbf{y}$

The **eigenanalysis coordinate system** is the set of n independent vectors extracted from the columns of P. In this coordinate system, the cross-coupled differential system (3) simplifies into a system of uncoupled growth-decay equations (4). Hence the terminology, the method of simplifying coordinates.

Eigenanalysis and Footballs

An ellipsoid or *football* is a geometric object described by its **semi-axes** (see Figure 2). In the vector representation, the **semi-axis directions** are unit vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and the **semi-axis lengths** are the constants a, b, c. The vectors $a\mathbf{v}_1$, $b\mathbf{v}_2$, $c\mathbf{v}_3$ form an **orthogonal triad**.



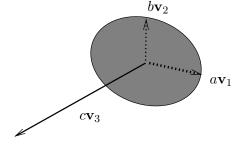


Figure 2. A football. An ellipsoid is built from orthonormal semi-axis directions \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and the semi-axis lengths a, b, c. The semi-axis vectors are $a\mathbf{v}_1$, $b\mathbf{v}_2$, $c\mathbf{v}_3$.

Two vectors \mathbf{a} , \mathbf{b} are *orthogonal* if both are nonzero and their dot product $\mathbf{a} \cdot \mathbf{b}$ is zero. Vectors are **orthonormal** if each has unit length and they are pairwise orthogonal. The orthogonal triad is an **invariant** of the ellipsoid's algebraic representations. Algebra does not change the triad: the invariants $a\mathbf{v}_1$, $b\mathbf{v}_2$, $c\mathbf{v}_3$ must somehow be **hidden** in the equations that represent the football.

Algebraic eigenanalysis finds the hidden invariant triad $a\mathbf{v}_1$, $b\mathbf{v}_2$, $c\mathbf{v}_3$ from the ellipsoid's algebraic equations. Suppose, for instance, that the equation of the ellipsoid is supplied as

$$x^2 + 4y^2 + xy + 4z^2 = 16.$$

A symmetric matrix A is constructed in order to write the equation in the form $\mathbf{X}^T A \mathbf{X} = 16$, where \mathbf{X} has components x, y, z. The replacement equation is⁴

(10)
$$\left(\begin{array}{ccc} x & y & z \end{array}\right) \left(\begin{array}{ccc} 1 & 1/2 & 0 \\ 1/2 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 16.$$

It is the 3×3 symmetric matrix A in (10) that is subjected to algebraic eigenanalysis. The matrix calculation will compute the unit semi-axis directions \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , called the **hidden vectors** or **eigenvectors**. The semi-axis lengths a, b, c are computed at the same time, by finding the **hidden values**⁵ or **eigenvalues** λ_1 , λ_2 , λ_3 , known to satisfy the relations

$$\lambda_1 = \frac{16}{a^2}, \quad \lambda_2 = \frac{16}{b^2}, \quad \lambda_3 = \frac{16}{c^2}.$$

For the illustration, the football dimensions are a=2, b=1.98, c=4.17. Details of the computation are delayed until page 526.

The Ellipse and Eigenanalysis

An ellipse equation in **standard form** is $\lambda_1 x^2 + \lambda_2 y^2 = 1$, where $\lambda_1 = 1/a^2$, $\lambda_2 = 1/b^2$ are expressed in terms of the semi-axis lengths a, b. The expression $\lambda_1 x^2 + \lambda_2 y^2$ is called a **quadratic form**. The study of the ellipse $\lambda_1 x^2 + \lambda_2 y^2 = 1$ is equivalent to the study of the quadratic form equation

$$\mathbf{r}^T D \mathbf{r} = 1$$
, where $\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}$, $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

⁴The reader should pause here and multiply matrices in order to verify this statement. Halving of the entries corresponding to cross-terms generalizes to any ellipsoid.

⁵The terminology *hidden* arises because neither the semi-axis lengths nor the semi-axis directions are revealed directly by the ellipsoid equation.

Cross-terms. An ellipse may be represented by an equation in a uv-coordinate system having a cross-term uv, e.g., $4u^2+8uv+10v^2=5$. The expression $4u^2+8uv+10v^2$ is again called a quadratic form. Calculus courses provide methods to eliminate the cross-term and represent the equation in standard form, by a **rotation**

$$\left(\begin{array}{c} u \\ v \end{array}\right) = R \left(\begin{array}{c} x \\ y \end{array}\right), \quad R = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right).$$

The angle θ in the rotation matrix R represents the rotation of uvcoordinates into standard xy-coordinates.

Eigenanalysis computes angle θ through the columns of R, which are the unit semi-axis directions \mathbf{v}_1 , \mathbf{v}_2 for the ellipse $4u^2 + 8uv + 10v^2 = 5$. If the quadratic form $4u^2 + 8uv + 10v^2$ is represented as $\mathbf{r}^T A \mathbf{r}$, then

$$\mathbf{r} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 4 \\ 4 & 10 \end{pmatrix}, \quad R = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix},$$
$$\lambda_1 = 12, \quad \mathbf{v}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \lambda_2 = 2, \quad \mathbf{v}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Rotation matrix angle θ . The components of eigenvector \mathbf{v}_1 can be used to determine $\theta = -63.4^{\circ}$:

$$\begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{or} \quad \begin{cases} \cos \theta & = \frac{1}{\sqrt{5}}, \\ -\sin \theta & = \frac{2}{\sqrt{5}}. \end{cases}$$

The interpretation of angle θ : rotate the orthonormal basis \mathbf{v}_1 , \mathbf{v}_2 by angle $\theta = -63.4^{\circ}$ in order to obtain the standard unit basis vectors \mathbf{i} , \mathbf{j} . Most calculus texts discuss only the inverse rotation, where x, y are given in terms of u, v. In these references, θ is the negative of the value given here, due to a different geometric viewpoint.

Semi-axis lengths. The lengths $a \approx 1.55$, $b \approx 0.63$ for the ellipse $4u^2 + 8uv + 10v^2 = 5$ are computed from the eigenvalues $\lambda_1 = 12$, $\lambda_2 = 2$ of matrix A by the equations

$$\frac{\lambda_1}{5} = \frac{1}{a^2}, \quad \frac{\lambda_2}{5} = \frac{1}{b^2}.$$

Geometry. The ellipse $4u^2 + 8uv + 10v^2 = 5$ is completely determined by the orthogonal semi-axis vectors $a\mathbf{v}_1$, $b\mathbf{v}_2$. The rotation R is a rigid motion which maps these vectors into $a\vec{\imath}$, $b\vec{\jmath}$, where $\vec{\imath}$ and $\vec{\jmath}$ are the standard unit vectors in the plane.

The θ -rotation R maps $4u^2 + 8uv + 10v^2 = 5$ into the xy-equation $\lambda_1 x^2 + \lambda_2 y^2 = 5$, where λ_1 , λ_2 are the eigenvalues of A. To see why, let $\mathbf{r} = R\mathbf{s}$ where $\mathbf{s} = \begin{pmatrix} x & y \end{pmatrix}^T$. Then $\mathbf{r}^T A \mathbf{r} = \mathbf{s}^T (R^T A R) \mathbf{s}$. Using $R^T R = I$ gives $R^{-1} = R^T$ and $R^T A R = \operatorname{diag}(\lambda_1, \lambda_2)$. Finally, $\mathbf{r}^T A \mathbf{r} = \lambda_1 x^2 + \lambda_2 y^2$.

⁶Rod Serling, author of *The Twilight Zone*, enjoyed the view from the other side of the mirror.

Orthogonal Triad Computation

Let's compute the semiaxis directions \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 for the ellipsoid $x^2 + 4y^2 + xy + 4z^2 = 16$. To be applied is Theorem 7. As explained on page 524, the starting point is to represent the ellipsoid equation as a quadratic form $X^TAX = 16$, where the symmetric matrix A is defined by

$$A = \left(\begin{array}{rrr} 1 & 1/2 & 0 \\ 1/2 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right).$$

College algebra. The characteristic polynomial $det(A - \lambda I) = 0$ determines the eigenvalues or hidden values of the matrix A. By cofactor expansion, this polynomial equation is

$$(4 - \lambda)((1 - \lambda)(4 - \lambda) - 1/4) = 0$$

with roots 4, $5/2 + \sqrt{10}/2$, $5/2 - \sqrt{10}/2$.

Eigenpairs. It will be shown that three eigenpairs are

$$\lambda_{1} = 4, \quad \mathbf{x}_{1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$\lambda_{2} = \frac{5 + \sqrt{10}}{2}, \quad \mathbf{x}_{2} = \begin{pmatrix} \sqrt{10} - 3 \\ 1 \\ 0 \end{pmatrix},$$

$$\lambda_{3} = \frac{5 - \sqrt{10}}{2}, \quad \mathbf{x}_{3} = \begin{pmatrix} \sqrt{10} + 3 \\ -1 \\ 0 \end{pmatrix}.$$

The vector norms of the eigenvectors are given by $\|\mathbf{x}_1\| = 1$, $\|\mathbf{x}_2\| = \sqrt{20 + 6\sqrt{10}}$, $\|\mathbf{x}_3\| = \sqrt{20 - 6\sqrt{10}}$. The orthonormal semi-axis directions $\mathbf{v}_k = \mathbf{x}_k/\|\mathbf{x}_k\|$, k = 1, 2, 3, are then given by the formulas

$$\mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} \frac{\sqrt{10} - 3}{\sqrt{20 - 6\sqrt{10}}} \\ \frac{1}{\sqrt{20 - 6\sqrt{10}}} \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} \frac{\sqrt{10} + 3}{\sqrt{20 + 6\sqrt{10}}} \\ \frac{-1}{\sqrt{20 + 6\sqrt{10}}} \\ 0 \end{pmatrix}.$$

Frame sequence details.

$$\begin{split} \mathbf{aug}(A - \lambda_1 I, \mathbf{0}) &= \left(\begin{array}{ccc|c} 1 - 4 & 1/2 & 0 & 0 \\ 1/2 & 4 - 4 & 0 & 0 \\ 0 & 0 & 4 - 4 & 0 \end{array} \right) \\ &\approx \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) & \text{Used combination, multiply} \\ &\text{and swap rules. Found } \mathbf{rref}. \end{split}$$

$$\begin{aligned} \mathbf{aug}(A - \lambda_2 I, \mathbf{0}) &= \begin{pmatrix} \frac{-3 - \sqrt{10}}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{3 - \sqrt{10}}{2} & 0 & 0 \\ 0 & 0 & \frac{3 - \sqrt{10}}{2} & 0 \end{pmatrix} \\ &\approx \begin{pmatrix} 1 & 3 - \sqrt{10} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} & \text{All three rules.} \\ \\ \mathbf{aug}(A - \lambda_3 I, \mathbf{0}) &= \begin{pmatrix} \frac{-3 + \sqrt{10}}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{3 + \sqrt{10}}{2} & 0 & 0 \\ 0 & 0 & \frac{3 + \sqrt{10}}{2} & 0 \end{pmatrix} \\ &\approx \begin{pmatrix} 1 & 3 + \sqrt{10} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} & \text{All three rules.} \end{aligned}$$

Solving the corresponding reduced echelon systems gives the preceding formulas for the eigenvectors \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 . The equation for the ellipsoid is $\lambda_1 X^2 + \lambda_2 Y^2 + \lambda_3 Z^2 = 16$, where the multipliers of the square terms are the eigenvalues of A and X, Y, Z define the new coordinate system determined by the eigenvectors of A. This equation can be re-written in the form $X^2/a^2 + Y^2/b^2 + Z^2/c^2 = 1$, provided the semi-axis lengths a, b, c are defined by the relations $a^2 = 16/\lambda_1$, $b^2 = 16/\lambda_2$, $c^2 = 16/\lambda_3$. After computation, a = 2, b = 1.98, c = 4.17.