Systems of Differential Equations

Elementary Methods

- Translating a Scalar System to a Vector-Matrix System
- Solving a Triangular System $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathrm{u}}$
- Solving a System $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}$ with Non-Triangular A
- Shortcut to Solve a Non-Triangular System $\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}$
- A Non-Triangular Illustration

Translating a Scalar System to a Vector-Matrix System

Consider the scalar system

$$
\begin{aligned}
& u_{1}^{\prime}(t)=2 u_{1}(t)+3 u_{2}(t) \\
& u_{2}^{\prime}(t)=4 u_{1}(t)+5 u_{2}(t)
\end{aligned}
$$

Define

$$
\overrightarrow{\mathrm{u}}=\binom{u_{1}(t)}{u_{2}(t)}, \quad A=\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)
$$

Then matrix multiply rules imply that the scalar system is equivalent to the vector-matrix equation

$$
\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}
$$

Solving a Triangular System

An illustration. Let us solve $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ for a triangular matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

The matrix equation $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ represents two differential equations:

$$
\begin{aligned}
& \boldsymbol{u}_{1}^{\prime}=\boldsymbol{u}_{1} \\
& \boldsymbol{u}_{2}^{\prime}=2 \boldsymbol{u}_{1}+\boldsymbol{u}_{2}
\end{aligned}
$$

The first equation $\boldsymbol{u}_{1}^{\prime}=\boldsymbol{u}_{1}$ has solution $\boldsymbol{u}_{1}=\boldsymbol{c}_{1} \boldsymbol{e}^{t}$. The second equation becomes

$$
u_{2}^{\prime}=2 c_{1} e^{t}+u_{2}
$$

which is a first order linear differential equation with solution $u_{2}=\left(2 c_{1} t+c_{2}\right) e^{t}$. The general solution of $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ is

$$
u_{1}=c_{1} e^{t}, \quad u_{2}=2 c_{1} t e^{-t}+c_{2} e^{t}
$$

Solving a System $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ with Non-Triangular A
Let $\boldsymbol{A}=\left(\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right)$ be non-triangular. Then both $\boldsymbol{b} \neq 0$ and $\boldsymbol{c} \neq 0$ must be satisfied. The scalar form of the system $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ is

$$
\begin{aligned}
& u_{1}^{\prime}=a u_{1}+b u_{2} \\
& u_{2}^{\prime}=c u_{1}+d u_{2}
\end{aligned}
$$

Theorem 1 (Solving Non-Triangular $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$)
Solutions $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ of $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ are linear combinations of the list of Euler solution atoms obtained from the roots r of the quadratic equation

$$
\operatorname{det}(A-r I)=0
$$

Proof of the Non-Triangular Theorem

The method is to differentiate the first equation, then use the equations to eliminate $\boldsymbol{u}_{2}, \boldsymbol{u}_{2}^{\prime}$. This results in a second order differential equation for \boldsymbol{u}_{1}. The same differential equation is satisfied also for \boldsymbol{u}_{2}. The details:

$$
\begin{aligned}
u_{1}^{\prime \prime} & =a u_{1}^{\prime}+b u_{2}^{\prime} \\
& =a u_{1}^{\prime}+b c u_{1}+b d u_{2} \\
& =a u_{1}^{\prime}+b c u_{1}+d\left(u_{1}^{\prime}-a u_{1}\right) \\
& =(a+d) u_{1}^{\prime}+(b c-a d) u_{1}
\end{aligned}
$$

Differentiate the first equation. Use equation $u_{2}^{\prime}=c u_{1}+d u_{2}$. Use equation $u_{1}^{\prime}=a u_{1}+b u_{2}$. Second order equation for \boldsymbol{u}_{1} found
The characteristic equation is $r^{2}-(a+d) r+(b c-a d)=0$, which is exactly the expansion of $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})=\mathbf{0}$. The proof is complete.

Cayley-Hamilton-Ziebur Method. The result above extends to any first order homogeneous system $\overrightarrow{\mathrm{x}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathrm{x}}$ of differential equations with constant coefficients. The result says that the general solution $\overrightarrow{\mathrm{x}}$ is a vector linear combination of the Euler solution atoms found from the roots $\boldsymbol{\lambda}$ of the characteristic equation $|\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}|=0$. Interesting is that the resulting solution $\overrightarrow{\mathrm{x}}$ is real: no complex numbers appear in the solution $\overrightarrow{\mathrm{x}}$.

Shortcut to Solve a Non-Triangular System $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$

- Finding \boldsymbol{u}_{1}. The two roots $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ of the characteristic equation produce two Euler solution atoms,
In case the roots are distinct, the Euler solution atoms are $\boldsymbol{e}^{r_{1} t}, \boldsymbol{e}^{r_{2} t}$. Then \boldsymbol{u}_{1} is a linear combination of atoms: $u_{1}=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
- Finding \boldsymbol{u}_{2}. Isolate \boldsymbol{u}_{2} in the first differential equation by division:

$$
u_{2}=\frac{1}{b}\left(u_{1}^{\prime}-a u_{1}\right)
$$

The two formulas for $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ represent the general solution of the system $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$, when A is 2×2.

A Non-Triangular Illustration

Let us solve $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ when \boldsymbol{A} is the non-triangular matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

The characteristic polynomial is $\operatorname{det}(A-r I)=(1-r)^{2}-4=(r+1)(r-3)$. Euler's theorem implies solution atoms $\boldsymbol{e}^{-t}, \boldsymbol{e}^{3 t}$. Then \boldsymbol{u}_{1} is a linear combination of the solution atoms, $u_{1}=c_{1} e^{-t}+c_{2} e^{3 t}$.
The first equation $u_{1}^{\prime}=u_{1}+2 u_{2}$ implies

$$
\begin{aligned}
u_{2} & =\frac{1}{2}\left(u_{1}^{\prime}-u_{1}\right) \\
& =-c_{1} e^{-t}+c_{2} e^{3 t} .
\end{aligned}
$$

The general solution of $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ is then

$$
u_{1}=c_{1} e^{-t}+c_{2} e^{3 t}, \quad u_{2}=-c_{1} e^{-t}+c_{2} e^{3 t}
$$

