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2.8 Science and Engineering Applications

Assembled here are some classical applications of first order differential
equations to problems of science and engineering.

• Draining a Tank, page 148.

• Stefan’s Law, page 149.

• Seismic Sea Waves and Earthquakes, page 151.

• Gompertz Tumor Equation, page 152.

• Parabolic Mirror, page 153.

• Logarithmic Spiral, page 153.

Draining a Tank

Investigated here is a tank of water with orifice at the bottom empty-
ing due to gravity; see Figure 7. The analysis applies to tanks of any
geometrical shape.

Figure 7. Draining a tank.
A tank empties from an orifice at the bottom. The
fluid fills the tank to height y above the orifice, and it
drains due to gravity.

Evangelista Torricelli (1608-1647), inventor of the barometer, investi-
gated this physical problem using Newton’s laws, obtaining the result in
Lemma 8, proof on page 158.

Lemma 8 (Torricelli) A droplet falling freely from height h in a gravita-
tional field with constant g arrives at the orifice with speed

√
2gh.

Tank Geometry. A simple but useful tank geometry can be con-
structed using washers of area A(y), where y is the height above the
orifice; see Figure 8.

A(y)

y

Figure 8. A tank constructed from
washers.
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Then the method of cross-sections in calculus implies that the volume
V (h) of the tank at height h is given by

V (h) =

∫ h

0
A(y)dy,

dV

dh
= A(h).(1)

Torricelli’s Equation. Torricelli’s lemma applied to the tank fluid
height y(t) at time t implies, by matching drain rates at the orifice (see
Technical Details page 158), that

d

dt
(V (y(t))) = −k

√
y(t)(2)

for some proportionality constant k > 0. The chain rule gives the sepa-
rable differential equation V ′(y(t))y′(t) = −k

√
y(t), or equivalently (see

page 158), in terms of the cross-sectional area A(y) = V ′(y),

y′(t) = −k
√
y(t)

A(y(t))
.(3)

Typical of the physical literature, the requirement y(t) ≥ 0 is omitted
in the model, but assumed implicitly. The model itself exhibits non-
uniqueness: the tank can be drained hours ago or at instant t = 0 and
result still in the solution y(t) = 0, interpreted as fluid height zero.

Stefan’s Law

Heat energy can be transferred by conduction, convection or radia-
tion. The following illustrations suffice to distinguish the three types of
heat transfer.

Conduction. A soup spoon handle gains heat from the soup by ex-
change of kinetic energy at a molecular level.

Convection. A hot water radiator heats a room largely by convection
currents, which move heated air upwards and denser cold air down-
wards to the radiator. In linear applications, Newton’s cooling
law applies.

Radiation. A car seat heated by the sun gets the heat energy from
electromagnetic waves, which carry energy from the sun to the
earth.

The rate at which an object emits or absorbs radiant energy is given
by Stefan’s radiation law

P = kT 4.
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The symbol P is the power in watts (joules per second), k is a constant
proportional to the surface area of the object and T is the temperature of
the object in degrees Kelvin. Use K = C + 273.15 to convert Celsius to
Kelvin. The constant k in Stefan’s law is decomposed as k = σAE . Here,
σ = 5.6696 × 10−8K−4 Watts per square meter (K=Kelvin), A is the
surface area of the body in square meters and E is the emissivity, which
is a constant between 0 and 1 depending on properties of the surface.

Constant room temperature. Suppose that a person with skin tem-
perature T Kelvin sits unclothed in a room in which the thermometer
reads T0 Kelvin. The net heat flux Pnet in joules per second (watts) is
given by

Pnet = k(T 4 − T 4
0 ).(4)

If T and T0 are constant, then Q = kt(T 4− T 4
0 ) can be used to estimate

the total heat loss or gain in joules for a time period t. To illustrate, if
the wall thermometer reads 20◦ Celsius, then T0 = 20 + 273.15. Assume
A = 1.5 square meters, E = 0.9 and skin temperature 33◦ Celsius or T =
33 + 273.15. The total heat loss in 10 minutes is Q = (10(60))(5.6696×
10−8)(1.5)(0.9)(305.154 − 293.154) = 64282 joules. Over one hour, the
total heat radiated is approximately 385, 691 joules, which is close to the
total energy provided by a 6 ounce soft drink.4

Time-varying room temperature. Suppose that a person with skin
temperature T degrees Kelvin sits unclothed in a room. Assume the
thermometer initially reads 15◦ Celsius and then rises to 24◦ Celsius af-
ter t1 seconds. The function T0(t) has values T0(0) = 15 + 273.15 and
T0(t1) = 24 + 273.15. In a possible physical setting, T0(t) reflects the
reaction to the heating and cooling system, which is generally oscillatory
about the thermostat setting. If the thermostat is off, then it is reason-
able to assume a linear model T0(t) = at+b, with a = (T0(t1)−T0(0))/t1,
b = T0(0).

To compute the total heat radiated from the person’s skin, we use the
time-varying equation

dQ

dt
= k(T 4 − T0(t)4).(5)

The solution to (5) with Q(0) = 0 is formally given by the quadrature
formula

Q(t) = k

∫ t

0
(T 4 − T0(r)4)dr.(6)

4American soft drinks are packaged in 12-ounce cans, twice the quantity cited.
One calorie is defined to be 4.186 joules and one food Calorie is 1000 calories (a
kilo-calorie) or 4186 joules. A boxed apple juice is about 6 ounces or 0.2 liters. Juice
provides about 400 thousand joules in 0.2 liters. Product labels advertising 96 Calories
mean 96 kilo-calories; it converts to 96(1000)(4.186) = 401, 856 joules.
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For the case of a linear model T0(t) = at+ b, the total number of joules
radiated from the person’s skin is found by integrating (6), giving

Q(t1) = kT 4t1 + k
b5 − (at1 + b)5

5a
.

Tsunami

A seismic sea wave due to an earthquake under the sea or some other
natural event, called a tsunami, creates a wave on the surface of the
ocean. The wave may have a height of less than 1 meter. These waves
can have a very large wavelength, up to several hundred miles, depending
upon the depth of the water where they were formed. The period is often
more than one hour with wave velocity near 700 kilometers per hour.
These waves contain a huge amount of energy. Their height increases
as they crash upon the shore, sometimes to 30 meters high or more,
depending upon water depth and underwater surface features. In the
year 1737, a wave estimated to be 64 meters high hit Cape Lopatka,
Kamchatka, in northeast Russia. The largest Tsunami ever recorded
occurred in July of 1958 in Lituya Bay, Alaska, when a huge rock and
ice fall caused water to surge up to 500 meters. For additional material
on earthquakes, see page 731. For the Sumatra and Chile earthquakes,
and resultant Tsunamis, see page 734.

Wave shape. A simplistic model for the shape y(x) of a tsunami in the
open sea is the differential equation

(y′)2 = 4y2 − 2y3.(7)

This equation gives the profile y(x) of one side of the 3D-wave, by cutting
the 3D object with an xy-plane.

Equilibrium solutions. They are y = 0 and y = 2, corresponding to
no wave and a wall of water 2 units above the ocean surface. There
are no solutions for y > 2, because the two sides of (7) have in this case
different signs.

Non-equilibrium solutions. They are given by

y(x) = 2− 2 tanh2(x+ c).(8)

The initial height of the wave is related to the parameter c by y(0) =
2−2 tanh2(c). Only initial heights 0 < y(0) < 2 are physically significant.
Due to the property limu→∞ tanh(u) = 1 of the hyperbolic tangent, the
wave height starts at y(0) and quickly decreases to zero (sea level), as is
evident from Figure 9.
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y(0)

0
x

y

Figure 9. A tsunami profile.

Non-uniqueness. When y(x0) = 2 for some x = x0, then also y′(x0) =
0, and this allows non-uniqueness of the solution y. An interesting solu-
tion different from equation (8) is the piecewise function

y(x) =

{
2− 2 tanh2(x− x0) x > x0,
2 x ≤ x0.

(9)

This shape is an approximation to observed waves, in which the usual
crest of the wave has been flattened. See Figure 12 on page 157.

Gompertz Tumor Equation

Researchers in tumor growth have shown that for some solid tumors the
volume V (t) of dividing cells at time t approaches a limiting volume M ,
even though the tumor volume may increase by 1000 fold. Gompertz
is credited with an equation which fits the growth cycle of some solid
tumors; the Gompertzian relation is

V (t) = V0e
a
b (1−e−bt).(10)

The relation says that the doubling time for the total solid tumor volume
increases with time. In contrast to a simple exponential model, which
has a fixed doubling time and no volume limit, the limiting volume in
the Gompertz model (10) is M = V0e

a/b.

Experts suggest to verify from Gompertz’s relation (10) the formula

V ′ = ae−btV,

and then use this differential equation to argue why the tumor volume V
approaches a limiting value M with a necrotic core; see Technical Details
for (11), page 158.

A different approach is to make the substitution y = V/V0 to obtain
the differential equation

y′ = (a− b ln y)y,(11)

which is almost a logistic equation, sometimes called the Gompertz
equation. For details, see page 158. In analogy with logistic theory,
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low volume tumors should grow exponentially with rate a and then slow
down like a population that is approaching the carrying capacity.

The exact mechanism for the slowing of tumor growth can be debated.
One view is that the number of reproductive cells is related to available
oxygen and nutrients present only near the surface of the tumor, hence
this number decreases with time as the necrotic core grows in size.

Parabolic Mirror

Overhead projectors might use a high-intensity lamp
located near a silvered reflector to provide a nearly
parallel light source of high brightness. It is called a
parabolic mirror because the surface of revolution is
formed from a parabola, a fact which will be justified
below.

The requirement is a shape x = g(y) such that a light beam emanating
from C(0, 0) reflects at point on the curve into a second beam parallel
to the x-axis; see Figure 10. The optical law of reflection implies
that the angle of incidence equals the angle of reflection, the straight
reference line being the tangent to the curve x = g(y).

A

y

x
θ

tangent
parabolic mirror

reflected ray

B C Figure 10. A parabolic mirror.

Symmetry suggests the restriction y ≥ 0 will suffice to determine the
shape. The assumption y(0) = 1 determines the y-axis scale.

The mirror shape x = g(y) is shown in Technical Details page 159 to
satisfy

dx

dy
=
x+

√
x2 + y2

y
, x(1) = 0.(12)

This equation is equivalent for y > 0 to the separable equation du/dy =√
u2 + 1, u(1) = 0; see Technical Details page 159. Solving the separable

equation (see page 159) gives the parabola

2x+ 1 = y2.(13)

Logarithmic Spiral

The polar curve

r = r0e
kθ(14)
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is called a logarithmic spiral. In equation (14), symbols r, θ are polar
variables and r0, k are constants. It will be shown that a logarithmic
spiral has the following geometric characterization.

A logarithmic spiral cuts each radial line from the origin at a
constant angle.

The background required is the polar coordinate calculus formula

tan(α− θ) = r
dθ

dr
(15)

where α is the angle between the x-axis and the tangent line at (r, θ);
see Technical Details page 160. The angle α can also be defined from
the calculus formula tanα = dy/dx.

The angle φ which a polar curve cuts a radial line is φ = α − θ. By
equation (15), the polar curve must satisfy the polar differential equation

r
dθ

dr
=

1

k

for constant k = 1/ tanφ. This differential equation is separable with
separated form

kdθ =
dr

r
.

Solving gives kθ = ln r + c or equivalently r = r0e
kθ, for c = − ln r0.

Hence equation (14) holds. All steps are reversible, therefore a logarith-
mic spiral is characterized by the geometrical description given above.

Examples

39 Example (Conical Tank) A conical tank with xy-projection given in Figure
11 is realized by rotation about the y-axis. An orifice at x = y = 0 is created
at time t = 0. Find an approximation for the drain time and the time to
empty the tank to half-volume, given 10% drains in 20 seconds.

x

y

(0, 0)

(1/
√

3, 1)

tank
surface Figure 11. Conical tank xy-projection.

The tank is obtained by rotation of the shaded triangle
about the y-axis. The cone has height 1.

Solution: The answers are approximately 238 seconds and 104 seconds. The
incorrect drain time estimate of ten times the given 20 seconds is wrong by 19
percent. Doubling the half-volume time to find the drain time is equally invalid
(both 200 and 208 are incorrect).
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Tank cross-section A(y). From Figure 11, the line segment along the tank
surface has equation y =

√
3x; the equation was found from the two points

(0, 0) and (1/
√

3, 1) using the point-slope form of a line. A washer then has
area A(y) = πx2 or A(y) = πy2/3.

Tank half-volume Vh. The half-volume is given by

Vh =
1

2
V (1) Full volume is V (1).

=
1

2

∫ 1

0

A(y)dy Apply V (h) =
∫ h
0
A(y)dy.

=
π

18
Evaluate integral, A(y) = πy2/3.

Torricelli’s equation. The differential equation (3) becomes

y′(t) = − 3k

π
√
y3(t)

, y(0) = 1,(16)

with k to be determined. The solution by separation of variables is

y(t) =

(
1− 15k

2π
t

)2/5

.(17)

The details:

y3/2y′ = −3k

π
Separated form.

2

5
y5/2 = −3kt

π
+ C Integrate both sides.

y5/2 = −15kt

2π
+ 1 Isolate y, then use y(0) = 1.

y =

(
1− 15kt

2π

)2/5

Take roots.

Determination of k. Let V0 = V (1)/10 be the volume drained after t0 = 20
seconds. Then t0, V0 and k satisfy

V0 = V (1)− V (y(t0)) Volume from height y(t0) to y(0).

=
π

9

(
1− y3(t0)

)
=
π

9

(
1−

(
1− 15k

2π
t0

)6/5
)

Substitute (17).

k =
2π

15t0

(
1−

(
1− 9V0

π

)5/6
)

Solve for k.

=
2π

15t0

(
1− 0.95/6

)
Drain times. The volume is Vh = π/18 at time t1 given by π/18 = V (t1) or
in detail π/18 = πy3(t1)/9. This requirement simplifies to y3(t1) = 1/2. Then
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(
1− 15kt1

2π

)6/5

=
1

2
Insert the formula for y(t).

1− 15kt1
2π

=
1

25/6
Take the 5/6 power of both sides.

t1 =
2π

15k

(
1− 2−5/6

)
Solve for t1.

= t0
1− 2−5/6

1− 0.95/6
Insert the formula for k.

≈ 104.4 Half-tank drain time in seconds.

The drain time t2 for the full tank is not twice this answer but t2 ≈ 2.28t1 or
237.9 seconds. The result is justified by solving for t2 in the equation y(t2) = 0,

which gives t2 =
2π

15k
=

t1
1− 2−5/6

=
t0

1− 0.95/6
.

40 Example (Stefan’s Law) An inmate sits unclothed in a room with skin
temperature 33◦ Celsius. The Celsius room temperature is given by C(r) =
14+11r/20 for r in minutes. Assume in Stefan’s law k = σAE = 0.63504×
10−7. Find the number of joules lost through the skin in the first 20 minutes.

Solution: The theory implies that the answer is Q(t1) where t1 = (20)(60) is
in seconds and Q′ = kT 4 − kT 4

0 . Seconds (t) are converted to minutes (r) by
the equation r = t/60. Use T = 33+273.15 and T0(t) = C(t/60)+273.15, then

Q(t1) = k

∫ t1

0

(T 4 − (T0(t))4)dt ≈ 110, 103 joules.

41 Example (Tsunami) Find a piecewise solution, which represents a Tsuna-
mi wave profile, similar to equation (9), on page 152. Graph the solution
on |x− x0| ≤ 2.

(y′)2 = 8y2 − 4y3, x0 = 1.

Solution: Equilibrium solutions y = 0 and y = 2 are found from the equation
8y2 − 4y3 = 0, which has factored form 4y2(2− y) = 0.

Non-equilibrium solutions with y′ ≥ 0 and 0 < y < 2 satisfy the first order
differential equation

y′ = 2y
√

2− y.

Consulting a computer algebra system gives the solution

y(x) = 2− 2 tanh2(
√

2(x− x0)).

Treating −y′ = 2y
√

2− y similarly results in exactly the same solution.

Hand solution. Start with the substitution u =
√

2− y. Then u2 = 2−y and
2uu′ = −y′ = −2yu = −2(2− u2)u, giving the separable equation u′ = u2 − 2.
Reformulate it as u′ = (u − a)(u + a) where a =

√
2. Normal partial fraction

methods apply to find an implicit solution involving the inverse hyperbolic
tangent. Some integral tables tabulate the integral involved, therefore partial
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fractions can be technically avoided. Solving for u in the implicit equation gives
the hyperbolic tangent solution u =

√
2 tanh(

√
2(x − x0)). Then y = 2 − u2

produces the answer reported above. The piecewise solution, which represents
an ocean Tsunami wave, is given by

y(x) =

{
2 x ≤ 1, back-wave

2− 2 tanh2(
√

2(x− 1)) 1 < x <∞. wave front

The figure can be made by hand. A computer algebra graphic appears in Figure
12, with maple code as indicated.

2
y

x

3−1
0.02

Figure 12. Tsunami wave profile.
The back-wave is at height 2. The front
wave has height given by the hyperbolic
tangent term, which approaches zero as
x→∞. The maple code:
g:=x->2-2*tanh(sqrt(2)*(x-1));

f:=x->piecewise(x<1,2,g(x));

plot(f,-1..3);

42 Example (Gompertz Equation) First, solve the Gompertz tumor equa-
tion, and then make (a) a phase line diagram and (b) a direction field.

y′ = (8− 2 ln y)y.

Solution: The only equilibrium solution computed from G(y) ≡ (8−2 ln y)y =
0 is y = e4 ≈ 54.598, because y = 0 is not in the domain of the right side of the
differential equation.

Non-equilibrium solutions require integration of 1/G(y). Evaluation using a
computer algebra system gives the implicit solution

−1

2
ln(8− 2 ln(y)) = x+ c.

Solving this equation for y in terms of x results in the explicit solution

y(x) = c1e
− 1

2 e
−2x

, c1 = e4−
1
2 e

−2c

.

The maple code for these two independent tasks appears below.

p:=int(1/((8-2*ln(y))*y),y);

solve(p=x+c,y);

The phase line diagram in Figure 13 requires the equilibrium y = e4 and for-
mulas G(y) = (8− 2 ln y)y, G′(y) = 8− 2 ln y− 2. Then G′(e4) = −2 implies G
changes sign from positive to negative at y = e4, making y = e4 a stable sink
or funnel.

y = e4

sink

Figure 13. Gompertz phase line diagram.
The unique equilibrium at y = e4 is a stable sink.
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A computer-generated direction field appears in Figure 14, using the following
maple code. Visible is the funnel structure at the equilibrium point.

de:=diff(y(x),x)=y(x)*(8-2*ln(y(x)));

with(DEtools):

DEplot(de,y(x),x=0..4,y=1..70);

Figure 14. A Gompertz
direction field.

Details and Proofs

Technical Details for (2): The derivation of d
dt (V (y(t))) = −k

√
y(t) uses

Torricelli’s speed formula |v| =
√

2gy(t). The volume change in the tank for an

orifice of cross-sectional area a is −av. Therefore, dV (y(t))/dt = −a
√

2gy(t).

Succinctly, dV (y(t))/dt = −k
√
y(t). This completes the verification.

Technical Details for (3): The equation y′(t) = −k
√
y(t)

A(y(t))
is equivalent to

A(y(t)) y′(t) = −k
√
y(t). The equation dV (y(t))/dt = V ′(y(t))y′(t), obtained

by the chain rule, definition A(y) = V ′(y), and equation (2) give result (3).

Technical Details for (8): To be verified is the Torricelli orifice equation
|v| =

√
2gh for the speed |v| of a droplet falling from height h. Let’s view the

droplet as a point mass m located at the droplet’s centroid. The distance x(t)
from the droplet to the orifice satisfies a falling body model mx′′(t) = −mg.
The model has solution x(t) = −gt2/2 + x(0), because x′(0) = 0. The droplet
arrives at the orifice in time t given by x(t) = 0. Because x(0) = h, then
t =

√
2h/g. The velocity v at this time is v = x′(t) = −gt = −

√
2gh. A

technically precise derivation can be done using kinetic and potential energy
relations; some researchers prefer energy method derivations for Torricelli’s law.
Formulas for the orifice speed depend upon the shape and size of the orifice. For
common drilled holes, the speed is a constant multiple c

√
2gh, where 0 < c < 1.

Technical Details for (11): Assume V = V0e
µ(t) and µ(t) = a(1 − e−bt)/b.

Then µ′ = ae−bt and

V ′ = V0µ
′(t)eµ(t) Calculus rule (eu)′ = u′eu.

= µ′(t)V Use V = V0e
µ(t).

= ae−btV Use µ′ = ae−bt.
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The equation V ′ = ae−btV is a growth equation y′ = ky where k decreases
with time, causing the doubling time to increase. One biological explanation
for the increase in the mean generation time of the tumor cells is aging of
the reproducing cells, causing a slower dividing time. The correctness of this
explanation is debatable.

Let y = V/V0. Then

y′

y
=
V ′

V
The factor 1/V0 cancels.

= ae−bt Differential equation V ′ = ae−btV applied.

= a− bµ(t) Use µ(t) = a(1− e−bt)/b.

= a− b ln(V/V0) Take logs across V/V0 = eµ(t) to find µ(t).

= a− b ln y Use y = V/V0.

Hence y′ = (a−b ln y)y. When V ≈ V0, then y ≈ 1 and the growth rate a−b ln y
is approximately a. Hence the model behaves like the exponential growth model
y′ = ay when the tumor is small. The tumor grows subject to a − b ln y > 0,
which produces the volume restraint ln y = a/b or Vmax = V0e

a/b.

Technical Details for (12): Polar coordinates r, θ will be used. The geometry
in the parabolic mirror Figure 10 shows that triangle ABC is isosceles with
angles α, α and π − 2α. Therefore, θ = 2α is the angle made by segment CA
with the x-axis (C is the origin (0, 0)).

y = r sin θ Polar coordinates.

= 2r sinα cosα Use θ = 2α and sin 2x = 2 sinx cosx.

= 2r tanα cos2 α Identity tanx = sinx/ cosx applied.

= 2r
dy

dx
cos2 α Use calculus relation tanα = dy/dx.

= r
dy

dx
(1 + cos 2α) Identity 2 cos2 x− 1 = cos 2x applied.

=
dy

dx
(r + x) Use x = r cos θ and 2α = θ.

For y > 0, equation (12) can be solved as follows.

dx

dy
=
x

y
+
√

(x/y)2 + 1 Divide by y on the right side of (12).

y
du

dy
=
√
u2 + 1 Substitute u = x/y (u cancels).

∫ du√
u2 + 1

=
∫ dy
y

Integrate the separated form.

sinh−1 u = ln y Integral tables. The integration constant is
zero because u(1) = 0.

x

y
= sinh(ln y) Let u = x/y and apply sinh to both sides.
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=
1

2

(
eln y − e− ln y

)
Definition sinhu = (eu − eu)/2.

=
1

2
(y − 1/y) Identity eln y = y.

Clearing fractions in the last equality gives 2x+ 1 = y2, a parabola of the form
X = Y 2.

Technical Details for (15): Given polar coordinates r, θ and tanα = dy/dx,
it will be shown that r dθ/dr = tan(α− θ). Details require the formulas

x = r cos θ,
dx

dr
= cos θ − r dθ

dr
sin θ,

y = r sin θ,
dy

dr
= sin θ + r

dθ

dr
cos θ.

(18)

Then

tanα =
dy

dx
Definition of derivative.

=
dy/dr

dx/dr
Chain rule.

=
sin θ + r dθdr cos θ

cos θ − r dθdr sin θ
Apply equation (18).

=
tan θ + r dθdr

1− r dθdr tan θ
Divide by cos θ.

Let X = rdθ/dr and cross-multiply to eliminate fractions. Then the preceding
relation implies (1−X tan θ) tanα = tan θ +X and finally

r
dθ

dr
= X Definition of X.

=
tanα− tan θ

1 + tanα tan θ
Solve for X in (1−X tan θ) tanα = tan θ +X.

= tan(α− θ) Apply identity tan(a− b) =
tan a− tan b

1 + tan a tan b
.

Physicists and engineers often justify formula (15) referring to Figure 15. Such
diagrams are indeed the initial intuition required to guess formulas like (15).

θ

C
x

tangenty

A

φ

Figure 15. Polar differential triangle.
Angle φ is the signed angle between the
radial vector and the tangent line.

Exercises 2.8

Tank Draining.

1. A cylindrical tank 6 feet high with

6-foot diameter is filled with gaso-
line. In 15 seconds, 5 gallons drain
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out. Find the drain times for
the next 20 gallons and the half-
volume.

2. A cylindrical tank 4 feet high with
5-foot diameter is filled with gaso-
line. The half-volume drain time is
11 minutes. Find the drain time for
the full volume.

3. A conical tank is filled with wa-
ter. The tank geometry is a solid
of revolution formed from y = 2x,
0 ≤ x ≤ 5. The units are in feet.
Find the drain time for the tank,
given the first 5 gallons drain out
in 12 seconds.

4. A conical tank is filled with oil.
The tank geometry is a solid of
revolution formed from y = 3x,
0 ≤ x ≤ 5. The units are in me-
ters. Find the half-volume drain
time for the tank, given the first
5 liters drain out in 10 seconds.

5. A spherical tank of diameter 12 feet
is filled with water. Find the drain
time for the tank, given the first 5
gallons drain out in 20 seconds.

6. A spherical tank of diameter 9 feet
is filled with solvent. Find the half-
volume drain time for the tank,
given the first gallon drains out in
3 seconds.

7. A hemispherical tank of diameter
16 feet is filled with water. Find
the drain time for the tank, given
the first 5 gallons drain out in 25
seconds.

8. A hemispherical tank of diameter
10 feet is filled with solvent. Find
the half-volume drain time for the
tank, given the first gallon drains
out in 4 seconds.

9. A parabolic tank is filled with wa-
ter. The tank geometry is a solid
of revolution formed from y = 2x2,
0 ≤ x ≤ 2. The units are in feet.

Find the drain time for the tank,
given the first 5 gallons drain out
in 12 seconds.

10. A parabolic tank is filled with oil.
The tank geometry is a solid of
revolution formed from y = 3x2,
0 ≤ x ≤ 2. The units are in me-
ters. Find the half-volume drain
time for the tank, given the first
4 liters drain out in 16 seconds.

Torricelli’s Law and Uniqueness. It
it known that Torricelli’s law gives a
differential equation for which Picard’s
existence-uniqueness theorem is inap-
plicable for initial data y(0) = 0.

11. Explain why Torricelli’s equation
y′ = k

√
y plus initial condition

y(0) = 0 fails to satisfy the hy-
potheses in Picard’s theorem. Cite
all failed hypotheses.

12. Consider a typical Torricelli’s law
equation y′ = k

√
y with initial con-

dition y(0) = 0. Argue physically
that the depth y(t) of the tank for
t < 0 can be zero for an arbitrary
duration of time t near t = 0, even
though y(t) is not zero for all t.

13. Display infinitely many solutions
y(t) on −5 ≤ t ≤ 5 of Torricelli’s
equation y′ = k

√
y such that y(t)

is not identically zero but y(t) = 0
for 0 ≤ t ≤ 1.

14. Does Torricelli’s equation y′ =
k
√
y plus initial condition y(0) =

0 have a solution y(t) defined for
t ≥ 0? Is it unique? Apply Pi-
card’s theorem and Peano’s theo-
rem, if possible.

Clepsydra: Water Clock Design. A
surface of revolution is used to make
a container of height h feet for a wa-
ter clock. A curve y = f(x) is re-
volved around the y-axis to make the
container shape (e.g., y = x makes a
conical shape). Water drains out by
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gravity at (0, 0). The orifice has di-
ameter d inches. The water level in
the tank must fall at a constant rate
of r inches per hour. Find d and f(x),
given h and r.

15. h = 5, r = 4

16. h = 4, r = 4

17. h = 10, r = 7

18. h = 10, r = 8

19. h = 15, r = 10

20. h = 15, r = 8

Stefan’s Law. An unclothed prison
inmate is handcuffed to a chair. The
inmate’s skin temperature is 33◦ Cel-
sius. Given emissivity E , skin area A
square meters and room temperature
T0(r) = C(r/60)+273.15, r in seconds,
find the number of Joules of heat lost
by the inmate’s skin after t0 minutes.
Use equation (5), page 150.

21. E = 0.9, A = 1.5, t0 = 10, C(t) =
24 + 7t/t0

22. E = 0.9, A = 1.7, t0 = 12, C(t) =
21 + 10t/12

23. E = 0.9, A = 1.4, t0 = 10, C(t) =
15 + 15t/t0

24. E = 0.9, A = 1.5, t0 = 12, C(t) =
15 + 14t/t0

On the next two exercises, use a
computer algebra system (CAS).

25. E = 0.8, A = 1.4, t0 = 15, C(t) =
15 + 15 sinπ(t− t0)/12

26. E = 0.8, A = 1.4, t0 = 20, C(t) =
15 + 14 sinπ(t− t0)/12

Tsunami Wave Shape. Plot the
piecewise solution (9). See Figure 12.

27. x0 = 2, |x− x0| ≤ 2

28. x0 = 3, |x− x0| ≤ 4.

Tsunami Piecewise Solutions. Dis-
play a piecewise solution similar to (9).
Produce a plot like Figure 12.

29. x0 = 2, |x− x0| ≤ 4,
(y′)2 = 16y2 − 10y3.

30. x0 = 2, |x− x0| ≤ 4,
(y′)2 = 16y2 − 12y3.

31. x0 = 3, |x− x0| ≤ 4,
(y′)2 = 8y2 − 2y3.

32. x0 = 4, |x− x0| ≤ 4,
(y′)2 = 16y2 − 4y3.

Tsunami Wavefront. Find non-
equilibrium solutions for the given dif-
ferential equation.

33. (y′)2 = 16y2 − 10y3.

34. (y′)2 = 16y2 − 12y3.

35. (y′)2 = 8y2 − 2y3.

36. (y′)2 = 16y2 − 4y3.

Gompertz Tumor Equation. Solve
the Gompertz tumor equation y′ =
(a − b ln y)y. Make a phase line dia-
gram.

37. a = 1, b = 1

38. a = 1, b = 2

39. a = −1, b = 1

40. a = −1, b = 2

41. a = 4, b = 1

42. a = 5, b = 1


