Constant Coefficient Equations

Theorem 3 (First Order Recipe)

Let a and b be constants, $a \neq 0$. Let r_{1} denote the root of $a r+b=0$. Then $y=c_{1} e^{r_{1} x}$ is the general solution of the first order equation

$$
a y^{\prime}+b y=0 .
$$

Theorem 4 (Second Order Recipe)

Let $a \neq 0, b$ and c be real constants. Let r_{1}, r_{2} be the two roots of $a r^{2}+b r+c=0$, real or complex. If complex, then let $r_{1}=\overline{r_{2}}=\alpha+i \beta$ with $\beta>0$. Consider the following three cases, organized by the sign of the discriminant $D=b^{2}-4 a c$:

$$
\begin{array}{ll}
D>0 \text { (Real distinct roots) } & y_{1}=e^{r_{1} x}, \quad y_{2}=e^{r_{2} x} \\
D=0 \text { (Real equal roots) } & y_{1}=e^{r_{1} x}, \quad y_{2}=x e^{r_{1} x} \\
D<0 \text { (Conjugate roots) } & y_{1}=e^{\alpha x} \cos (\beta x), \quad y_{2}=e^{\alpha x} \sin (\beta x) .
\end{array}
$$

Then y_{1}, y_{2} are two solutions of

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

and all solutions are given by $y=c_{1} y_{1}+c_{2} y_{2}$, where c_{1}, c_{2} are arbitrary constants.

Theorem 5 (Existence-Uniqueness)

Let the coefficients $a(x), b(x), c(x), f(x)$ be continuous on an interval J containing $x=x_{0}$. Assume $a(x) \neq 0$ on J. Let y_{0} and y_{1} be constants. The initial value problem

$$
\begin{aligned}
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \\
& y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

has a unique solution $y(x)$ defined on J.

Theorem 6 (Superposition)

The homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ has the superposition property:

If y_{1}, y_{2} are solutions and c_{1}, c_{2} are constants, then the combination $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is a solution.

Theorem 7 (Homogeneous Structure)

The homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ has a general solution of the form

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x),
$$

where c_{1}, c_{2} are arbitrary constants and $y_{1}(x), y_{2}(x)$ are solutions.

Theorem 8 (Non-Homogeneous Structure)

The non-homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=$ $f(x)$ has general solution

$$
y(x)=y_{h}(x)+y_{p}(x),
$$

where
$y_{h}(x)$ is the general solution of the homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$, and $y_{p}(x)$ is a particular solution of the nonhomogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$.

