Principle Component Analysis

By: Miriam Galecki

Principle Component analysis is a linear projection method used to reduce the number of
parameters. It works by transferring a set of correlated variables onto a new set of uncorrelated
variables. This is also to say that the direction of most variance, for the new data after PCA, is
along the x-axis. Principal component analysis can be viewed as a way to rotate the existing
data to a new position whose axes are orthogonal and represent the direction with the maximum
variability. PCA is also a very useful tool in reducing dimensionality.

| will start out with a quick explanation on how to do PCA. For this example | have
created the random data set below of 11 students who each took 3 tests. | will call this data set

C RAW DATA MATRIX
TEST

90 90 30
85 80 20
87 90 30
90 80 10
STUDENT 88 85 15
93 83 32
89 90 25
88 80 12
92 78 17
87 89 15
91 80 19

Below is a plot of the original data



PLOT OF MEAN ORIGINAL DATA
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The first step in the PCA is to calculate the Mean Adjusted data. Since PCA transforms
the data so that it is centered at the origin we are going to find a matrix that is the mean of each
each test filled in the columns of a matrix. This matrix will be called the Mean Adjuster Matrix. A
is the raw data matrix. A is an n x m matrix. [1] is an n x n matrix filled with ones.To find the
Mean Adjuster matrix we will perform the following calculation. Where MC1 is the mean of
column 1.

FIND MEAN ADJUSTER MATRLX
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Above is the general equation. Below is a picture of the calculation for our example.
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Now to actually find our mean adjusted data we will subtract our mean adjuster matrix
from our original data matrix. This calculations makes intuitive sense. It makes sense to subtract
the mean from each point if we want the data to be centered at the origin/the mean of our new
data to be zero. Below is the calculations to find our mean adjusted data.

MEAN ADJUSTED DATA

90
80
90
80
85
83
90
80
78
89
80

(AL TULATEL/NG - A

30 r $ 85,0909
20 89.0909
30 89.0909
10 89.0909
15 89.0909
32 |== | 89.0909
25 89.0909
12 89.0909
17 89.0909
15 89.0909
19 89.0909
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0.9091 5.9091
-4.0909 -4.0909
-2.0909 5.9091
0.9091 -4.0909
-1.0909 0.9091
3.9091 -1.0909
-0.0909 5.9091
-1.0909 -4.0909
2.9091 -6.0909
-2.0909 4.9091
1.9091 -4.0909

-

_—
9.5455

-0.4545
9.5455
-10.4545
-5.4545
11.5455
4.5455
-8.4545
-3.4545
-5.4545
-1.4545

Below is a plot of our mean adjusted data. The original data is in red and the adjusted
data is in blue. As you can see this data maintains the same shape and general orientation. It is
just shifted so that the mean of this data is (0,0,0)



PLOT OF MEAN ADJUSTED DATA
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The next step is to compute the covariance/variance matrix. Note that the covariance
between n and n is the same thing as the variance of n. The covariance matrix will have the
variance of 1 in the top left corner denoted as sigma 11 and the covariance of 1 and 2 denoted
as sigma 12 in the first row second column and so on and so forth. Below are the covariance
and variance equations along with the layout of the covariance matrix for a general problem.

COVARTANCE/ VARTANCE MATRIX
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Below is the filled in covariance matrix for our example.

UaR()  CoviL,2) - Cov(L})
Cov(2,L) Va(2)  Cov(2,3)

Covs,D)  Cov(3,2) VaR(3)

-3.1091 3.9545
23.4909  20.1545
20.1545  59.0727

We computed the covariance matrix because we are interested in which direction the
data varies the most. To do this we will compute the eigenvalues and the eigenvectors of the
covariance matrix. We do this by first computing the eigenvalues. As shown below

FIND EIGENVALUES
ICOVARIANCE-AT [0

5.6909- A -3.1091 3.9545
-3.1091 23.4909-), 20.1545 = U
3.9545 20.1545 59.0727 -\



CHARACTERISTLC EQUATION
P50 - A 1620 00 A+ 11914

A1- 37403
AL 10060
A0

Using the eigenvalues we now calculate the eigenvectors. Below are the eigenvalues
and their associated eigenvectors.

FIND ELGENVECTORS
A 3JHDS I - o3

-0.1890

Al- 16,261 1= Gasso

0.0374

ISEIWAYE Iy~ oot

0.9122

Because we computed these eigenvectors from the covariance matrix they are useful in

determining in which direction our data varies the most/ least. The eigenvectors with the largest

eigenvalue corresponds to the dimension that has the strongest correlation in the data set. In

other words the direction in which the data varies the most. In this case the data varies the most

in the direction of V3.
To find the final data we will create two new matrices. One matrix is the
RowFeatureVector which is a matrix with the eigenvectors in order from highest variance first to

lowest variance. The second Matrix we need to calculate is the RowZeroMeanData which is the

mean adjusted data transposed. Below are these two matrices in the context of our problem.



FIND THE FINAL DATA

0.0374
AOWFEATUREVECTOR - o.dost
0.9122
ROWIEROMEANDATA -
0.9091 -4.0909 -2.0909  0.9091 -1.0909  3.9091 -0.0909 -1.0909
5.0091 -4.0909  5.9091 -4.0909  0.9091 -1.0909  5.9091  -4.0909
9.5455  -0.4545  9.5455 -10.4545 -5.4545 11.5455  4.5455 -8.4545

-0.3855

0.8480

-0.3636

2.9091
-6.0909
-3.4545

-2.0909
4.9091
-5.4545

0.9220
0.3380
-0.1890

1.9091
-4.0909
-1.4545

To find the final data we simply take the transpose of the multiplication of
RowFeatureVector X RowZeroMeanData.

DATA - ROWFEATUREVECTOR X ROWLEROMEANDATA

TRANSPOS

FDATA) = FINALDATA -

6.5569
1.0049
6.4447
-8.0279
-5.4201
11.2111
1.9096
-6.2587
-0.7284
-6.9993
0.3072

8.6087
-5.2925
7.3843
-6.6320
-1.5180
4.5727
6.5105
-6.7722
-5.1458
1.4661
-3.1818

-3.1237
-2.1580
-5.8602
4.2929
-0.2947
1.7802
-3.0908
2.0905
5.5214
-2.6614
3.5039

Below are graphs representing this transformation. The final plot is in black. The Original
Data is in red. The mean adjusted data is blue.
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As | mentioned earlier a useful thing about PCA is that you can use it to reduce
dimensionality. You can reduce the dimensionality of the graph/data by removing the direction of
least variance, this is to ignore the eigenvector with the smallest eigenvalue. {reduced_data=
meanadjusted*[V(:,3,V(:,2)]} Below is a graph from our example when we reduce the
dimensionality from 3 dimensional to 2 dimensional. On this graph | included a linear regression
line. This linear regression line has slope zero and lies on the x-axis. This shows that the data is
now uncorrelated/the direction of most variance is along the x-axis.

REDUCED DIMENSIONALITY

Below is another picture that demonstrates reduced dimensionality. This can help in
visualization as to why reducing the dimensionality can be helpful.
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| was interested in principal component analysis so that | could use it to analyze
information of the paleomorphogeological relationships regarding the shape of barrier islands.
For this research | will use PCA to compare data of ancient and modern barrier islands. The
paleomorphogeologists are interested in the shape of these island and what aspects affect the
shape. By using this transformation they will be able to guess where petroleum deposits are
located in ancient barrier islands. We do this by looking at the conditions under which the
modern barrier islands are being formed and by comparing the shapes of the two data sets we
can assume under which condition the ancient islands were formed.

Below is my code that | used for my barrier island PCA transformation. For the plot
above 1,031 different barrier islands are analyzed. The original data is in red and the
transformed data is in green. The lines drawn are the eigenvector with the greatest variance and
the corresponding orthogonal vector.
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test=[1,w];

test = test(test(:,1)~=0,:);
test = log(test);
meanTest = mean(test);

scatter(test(:,1),test(:,2),'ro")
hold on

[coeff,score, latent] = pca(test);
testcentered = scorexcoeff;
[U,S,V] = svd( test - repmat(meanTest,size(test,1),1) ,0 );

quiver(meanTest(1),meanTest(2),score(1,1),score(2,1), " 'k"', 'Linewidth',3)
quiver(meanTest(1),meanTest(2),score(1,2),score(2,2), " 'k"', 'Linewidth',3)

covariance = cov(testcentered);

[V,D] = eig(covariance)

EigenVectors = [V(:,2),V(:,1)]
RowFeatureVector = transpose(EigenVectors)
RowDataAdjusted = transpose(testcentered)
newdata = RowFeatureVectorx RowDataAdjusted
finaldata = transpose(newdata)
scatter(finaldata(:,1),finaldata(:,2), 'g*"')
line([0, @], [-1,0],'Linewidth"',3);
line([-1,0], [@ @], 'Linewidth',3);

Principal Component analysis is very useful for all types of research, as demonstrated by
using it for the statistical analysis of barrier islands. However, the component of reducing
dimensionality has many uses too including, but not limited to face recognition, handwritten digit
recognition, text mining, image retrieval, image compression, and protein classification.

11



