
An Application of Linear Algebra in Least-Squares Solutions and Statistical Inference 

Linear Algebra, Spring 2017 

Mark Lavelle 

 

Science and Least-Squares Solutions 

In scientific investigations, multiple, related types of data are often recorded on different 

variables involved in a phenomenon for the purposes of understanding, predicting, and 

controlling the relationships between those variables and the phenomenon itself. Relationships 

between quantitative data may be modeled with equations. Commonly, the question is posed as 

to how data covary as a function of one another. Often, the dependent variable is expressed as a 

function of a linear combination of a-priori hypothesized functions (e.g. polynomials, sinusoids) 

of the independent variables. The purpose of the data analyses, in these cases, is to estimate the 

coefficients on those functions.  

A typical analysis of this form would involve equations such as  

yi = B0 + B1f(X1i) + … + Bkg(Xni) + ei (1) 

where i is the observation or data sample, y represents the dependent variable, B0 represents the 

intercept, f(), g(), etc., represent functions of the independent variables X1-Xn, B1-Bk represent 

the coefficients for the k functions for which we need to solve, and ei represents the error term, or 

the difference between the value of the DV predicted from the model and the value actually 

recorded for a given observation i. Commonly, multiple observations on all the variables are 

recorded, and these can be stored in vectors in Ri. The vector of the observations of the 

dependent variable is commonly referred to in linear algebra as the observation vector, y. The 

vectors of the function-values of the independent variables can be augmented into a matrix 

whose dimensions are i-by-k+1, where k is the number of functions of the independent variables 

included in the equation; B0 is usually represented by a vector of 1s (e.g.<1,1,…,1>) in Ri and is 

also augmented with those vectors, giving the matrix it’s +1 column. This matrix is often called 

the design matrix, X. The unknown parameters B0-Bk are stored in a vector in RK+1
 titled the 

parameter vector, B.  

Linear algebra is useful for solving the equation  

XB=y (2) 

for B. In typical applications, this equation usually forms many inconsistent linear equations 

because of unaccounted variance in y. Additionally, i is (necessarily, for the purposes of finding 

a unique solution to equation 2) much larger than k. However, it is often desirable to obtain 

parameter estimates to approximate y with as little prediction error as possible. Though 

prediction error can be measured many ways, it is ubiquitously expressed as the sum of the 

squared ei terms. A unique solution for equation 2 that minimizes the sums of squares of the 

residuals (SSresid) is usually obtainable. This is commonly referred to as the least-squares 

solution. This solution, known as B̂, contains the coefficients on the columns of X which 

minimize the distance between y and the hyperplane spanned by the columns of X. Supposing the 

columns of X are independent,  



B̂ = (X’X)-1X’y (3) 

where ’ represents the transpose operator and -1 represents the inverse operator. The method of 

solving this equation to obtain B̂ is called ordinary least squares (OLS) regression. 

Statistical Assumptions and Inference 

It is often desirable to infer from one’s sample of data the behavior of the phenomenon in 

general, or in cases that have not yet been observed. Under certain assumptions about the 

residuals (the ei terms), it can be shown that the values for B0-Bk obtained for any particular 

sample are unbiased estimates of those same parameters in the population. Therefore, B̂ from 

one’s sample is the best guess of how the functions of the independent variables relate to the 

dependent variable. Exactly how accurate the parameter estimates B̂ are, or how confident we 

can be that a given margin of error around B̂ contains the true population values, is a function of 

the variability in the independent variables X1-Xn and their covariance with the y. An index of 

this variance within an IV and covariance between that IV and the DV is the standard error 

(SE) of the estimate. For regression coefficients, the standard errors can be obtained by  

σ2(X’X)-1 (4) 

where σ2 = SSresid. σ
2 can be calculated as 

(I – X (X’X)-1X)y (5) 

where I is the i-by-i identity matrix. 

Taking for granted assumptions about the model in equation 1, and the assumptions about 

the residuals, Student’s t distributions can be used to: test the probability that a parameter is non-

zero (also known as null-hypothesis significance testing, NHST), or; provide a multiplier to 

apply to the SE, yielding a margin of error (ME) with a given confidence level. This margin of 

error is then subtracted and added to the parameter estimate to yield a confidence interval (CI) 

with a given probability of confidence. For example, a t-test against the null hypothesis can be 

conducted by dividing the value of a particular parameter estimate by its SE, yielding a t-score 

with a given amount of degrees of freedom (df). The t-score can be compared to the t-

distribution with mean=0, SE=the standard error of the parameter being tested, and given df, to 

determine the percentage of the distribution which is more extreme than that score. This 

percentage is commonly referred to in statistics for the social sciences as the significance- or p-

value. Similarly, a t-score with a particular p-value can be chosen from a t-distribution with 

given df. Commonly, t-scores with p-value = .025 are chosen and are used to provide a two-

tailed 95% CI around the parameter estimate. The 95% CI around the parameter estimate is 

interpreted to contain the true population parameter 19 out of 20 times. A connection between 

NHST and confidence intervals is that if a p% CI does not include zero, the significance value of 

the test that the parameter equals zero is less than p/100. 

In addition to testing the significance of particular parameters, it is often of interest to 

determine how well the entire model in equation 1 can predict the dependent variable. This is 

often quantified as a question about how much variance in the DV that the model accounts for, 

relative to the total variance in the dependent variable. Analysis of variance (ANOVA) tests 

exactly that question by taking the ratio of explained variance (SSregression/dfregression) to the 

unexplained variance (SSresidual/dfresidual), known as the F ratio. The null hypothesis is that the 



explained variance will be proportional to the unexplained variance, that is F=1. The significance 

of the F statistic can be found by comparison to an F distribution with dfregression, dfresidual. The 

significance value reflects the likelihood that the model does not explain more variance than 

would be expected by chance due to sampling error. 

Application to Experimental Psychology Data 

Data. The above theory was applied to a dataset available through a statistics class I 

previously took. The data are purported to have been collected in a psychological experiment 

assessing the influence of induced fear and human participants’ biological sex on their 

perceptions of affordances judged from auditory stimuli. In particular, participants were 

randomly assigned to either: 1) write with pen and paper about an experience that caused them to 

be fearful, or; 2) write with pen and paper about a neutral topic. Participants’ biological sexes 

were also noted. After writing about either type of experience, participants were asked to 

repeatedly listen to auditory stimuli that were simulated to give the perception of sound-sources 

at different distances. For each stimulus, participants were asked to indicate whether they 

thought they could reach the sound source. Finally, the average distance of the sound sources 

that they judged reachable was calculated. These distances were recorded in centimeters. 67 

participants completed the experiment, 40 of which were female. 34 were assigned to the fearful 

writing condition. The mean of participants’ average distances judged reachable was 77.8cm, 

SD=14.9. 

Coding Categorical Variables. The researchers were interested in whether induced fear 

would change peoples’ perceptions of their average distances judged reachable, and whether this 

relationship would change according to gender. To test these hypotheses, average distances 

judged reachable were regressed onto gender, writing condition, and their interaction, as 

categorical variables. Gender was dummy coded with 0 meaning male, 1 meaning female. This 

dummy code variable is referred to hereafter as “female”. Writing condition was dummy coded 

with 0 meaning the control condition (writing about a neutral topic) and 1 meaning the fear 

condition. This dummy code variable is referred to hereafter as “fear”. The interaction between 

fear and female was calculated by assigning a 1 to participants who were both female AND 

assigned to write about a fearful experience. All other participants were assigned a zero. 

The least-squares equation. The design matrix and parameter vector used in the normal 

equation to find a least-squares solution for the observation vector were constructed as follows. 

A design matrix was constructed via augmentation of the constant vector (containing all ones), 

the fear vector, the female vector, and the interaction vector, in that order. The parameter vector 

consisted of 4 rows, with the first assigned for B0, or the intercept. As an artifact of the coding 

scheme, the intercept represents the mean distance judged reachable for males in the control 

condition (i.e., participants with 0s for female and fear). The second row in the parameter vector 

designated B1, or the coefficient for the fear variable. The value of B1 represents the average 

difference between males assigned to different writing conditions in terms of distances judged 

reachable, with positive values indicating longer distances judged reachable in the fear relative to 

the control condition. The third row designated B2, or the coefficient for the female vector. The 

value of B2 represents the average difference between males and females in the control condition 

in terms of distances judged reachable, with positive values indicating that females judged longer 

distances as reachable than males. The third row designated B3, or the coefficient for the 

interaction between fear and female. The value of B3 represents the difference between males 



and females in the relationship between writing condition and distance judged reachable, with 

positive values indicating that the effect of writing condition on distances judged reachable is 

greater for females than males. Here is the equation in scalar form 

Distance judged reachable=B0 + B1*(Condition: Control-0; Fear-1) + B2*(Sex: Male-0; 

Female-1) + B3*(Condition*Sex) (6) 

The parameters were solved for using a custom script in R. Standard errors, significance 

values, and confidence intervals were also obtained. Total model fit was calculated. Figure 1 

shows distances judged reachable plotted against writing condition, with least-squares lines 

added separately for gender. Figure 2 shows distances judged reachable plotted against gender, 

with least-squares lines added separately for writing condition. Figure 3 illustrates the 

improvement in prediction of distances judged reachable by using the model, relative to the 

mean of the data alone, i.e. the residuals of the regression relative to the variance of the raw data. 

Results. Typically, statistical effects with significance value greater than .05 are 

considered “insignificant,” that is they are considered as spurious findings due to sampling error. 

In this spirit, only the coefficient for the female dummy code variable was significant. The 

parameter estimate obtained from this sample indicates that, on average, females tend to perceive 

their capacity for reaching as 11.4cm shorter than the distance over which males perceive 

themselves as capable of reaching. Because the interaction variable was insignificant at p=.05, 

this effect for gender on distances judged reachable is regarded as generalizing across both 

writing conditions. The main hypothesis was not supported, in that induced fear did not 

significantly change distances judged as reachable relative to neutral emotional state. 

The model as a whole accounted for 16.7% of the variance in distances judged reachable. 

This reduction of variance was significant, F(3,63)=4.28, p=.008 

Results of OLS Multiple Regression 

Coefficient 
Parameter 

Estimate 

Standard 

Error 

t-score 

(df=63) 

95% CI 
Significance 

B0 79.3 14.9  
  

B1 2.12 5.39 .394 [-8.64, 12.89] .695 

B2 -11.4 4.87 -2.35 [-21.1, -1.7] .022 

B3 12.7 6.97 1.82 [-1.23, 26.61] .074 

 

Conclusion 

Linear equations involving empirical data are almost never consistent because of 

measurement error and unaccounted variance. Therefore, least-squares solutions are sought for 

the unknown parameters involved in hypothesized models that attempt to predict dependent 

variables from independent variables. When these models and the residuals meet certain 

assumptions, statistical inference from the sample estimates of parameters to the population 

parameters is possible. Linear algebra aids in the conceptualization and computation of solving 

for parameter estimates and in calculating the forms of variance involved in statistical inference. 

Therefore, linear algebra is a ubiquitous, invaluable tool in scientific inquiry.  
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Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 



Figure 3. 

 

  



Source Code: 

############################################################################### 
###################OLS Regression Using Matrix Operations###################### 
############################################################################### 
#The project will involve: 
# reading the file; 
# coding the categorical variables; 
# arranging data in objects amenable to matrix operations; 
# solving the normal equations to obtain the regression parameter estimates; 
# calculating standard errors of parameter estimates and conducting hypothesis 
#  testing on those parameters; 
# visualizing the data and the mathematical operations involved in generating; 
#  the output 
 
 
library("Matrix", lib.loc="C:/Program Files/R/R-3.3.2/library") 
library("foreign", lib.loc="C:/Program Files/R/R-3.3.2/library") 
library("graphics", lib.loc="C:/Program Files/R/R-3.3.2/library") 
library("lattice", lib.loc="C:/Program Files/R/R-3.3.2/library") 
library("stats", lib.loc="C:/Program Files/R/R-3.3.2/library") 
library("quantreg", lib.loc="~/R/win-library/3.3") 
library("plyr", lib.loc="~/R/win-library/3.3") 
library("matlib", lib.loc="~/R/win-library/3.3") 
library("plyr", lib.loc="~/R/win-library/3.3") 
library("knitr", lib.loc="~/R/win-library/3.3") 
###############################Loading the data################################ 
 
 
pathString<-paste("C:/Users/Tofu/Documents/College/Spring 2017/Linear Algebra/", 
                           "OLS Project/HW5 - Categorical Interactions (1).csv", 
                           sep="") 
 
rawReachingData=as.data.frame(read.csv(pathString)) 
 
 
 
##############################Organize as Matrix############################### 
distancesVector=as.vector(rawReachingData[,3]) 
 
# Recode categorical variables into dummy codes. 
#################  Gender: 0=male, 1=female ################## 
#################  Condition: 0=control, 1=fear ############## 
 
sampleN=length(distancesVector) 
 
femaleVector = vector(, sampleN) 
 



#female coding 
for (i in 1:sampleN) 
{ 
  if (rawReachingData[i,2] == "Female") 
    { 
      femaleVector[i]=1 
    } 
  else 
  { 
    femaleVector[i]=0 
  } 
} 
 
fearVector = vector(, sampleN) 
 
#Condition coding 
for (i in 1:sampleN) 
{ 
  if (rawReachingData[i,1] == "Fear") 
  { 
    fearVector[i]=1 
  } 
  else 
  { 
    fearVector[i]=0 
  } 
} 
 
 
constantVector = as.vector(matrix(1,nrow=sampleN,ncol=1)) 
 
interactionVector = as.vector(matrix(0,nrow=sampleN, ncol=1)) 
 
for (i in 1:sampleN) 
{ 
  if (fearVector[i] == 1 && femaleVector[i] == 1) 
  { 
    interactionVector[i]=1 
  } 
} 
 
#combine the IV vectors and a constant into the Design Matrix 
# Design Matrix X: X'XB=X'y. Note the apostrophe denotes the transpose operator 
 
designMatrix=cbind(constantVector,fearVector,femaleVector, interactionVector) 
 
 
##########################Solve the normal equations########################### 



# B=inv(X'X)X'y. The elements in B are the parameter estimates 
 
parameterVector = as.data.frame(c(0,0,0,0), row.names = c("Intercept",  
                                                          "Fear", "Female", 
                                                          "Interaction")) 
 
for (i in 1:4) 
{ 
  parameterVector[i,1] = 
    (inv(t(designMatrix) %*% designMatrix) %*%  
       (t(designMatrix)%*%distancesVector))[i,1] 
} 
 
##################Find standard errors of paremeter estimates################## 
I67X67 = diag(67) 
 
modelResidualMaker = I67X67 - (designMatrix %*% inv(t(designMatrix) %*%  
                                                      designMatrix) %*%  
                                 t(designMatrix)) 
 
distancesOnModelResiduals = modelResidualMaker %*% distancesVector 
 
# SS residuals 
SSresid = t(distancesOnModelResiduals)%*%distancesOnModelResiduals 
 
# Variance of residuals 
VarResid=SSresid/(sampleN-4) 
 
#Method for finding standard errors of the coefficients 
fearMean = mean(designMatrix[,2]) 
femaleMean = mean(designMatrix[,3]) 
interactionMean=mean(designMatrix[,4]) 
 
fearMeanVect = as.vector(matrix(fearMean, nrow=sampleN, ncol=1)) 
femaleMeanVect = as.vector(matrix(femaleMean, nrow=sampleN, ncol=1)) 
interactionMeanVect = as.vector(matrix(interactionMean, nrow=sampleN, ncol=1)) 
 
meanCenteredDesignMaker = cbind(fearMeanVect, femaleMeanVect, 
                                interactionMeanVect) 
 
centeredDesignMatrix=cbind(fearVector, femaleVector, interactionVector) - 
                             meanCenteredDesignMaker 
 
invDesignDotProd = inv(t(centeredDesignMatrix) %*% centeredDesignMatrix) 
 
coefficientVarCov = VarResid[1,1] * invDesignDotProd 
 
coefficientSEs = sqrt(diag(coefficientVarCov)) 



 
#Calculate significance values for t-scores of the parameters 
tScoreFear=parameterVector[2,1]/coefficientSEs[1] 
tScoreFemale=parameterVector[3,1]/coefficientSEs[2] 
tScoreIntrx=parameterVector[4,1]/coefficientSEs[3] 
 
# Two-tailed probabilities 
significanceFear=pt(abs(tScoreFear), df=sampleN-4, lower.tail = FALSE)*2 
significanceFemale=pt(abs(tScoreFemale), df=sampleN-4, lower.tail = FALSE)*2 
significanceIntrx=pt(abs(tScoreIntrx), df=sampleN-4, lower.tail = FALSE)*2 
 
#Confidence intervals 
CImultiplier = qt(.975, df=63) 
fearCI=c(parameterVector[2,1]-(CImultiplier*coefficientSEs[1]), 
         parameterVector[2,1]+(CImultiplier*coefficientSEs[1])) 
 
femaleCI=c(parameterVector[3,1]-(CImultiplier*coefficientSEs[2]), 
         parameterVector[3,1]+(CImultiplier*coefficientSEs[2])) 
 
intrxCI=c(parameterVector[4,1]-(CImultiplier*coefficientSEs[3]), 
         parameterVector[4,1]+(CImultiplier*coefficientSEs[3])) 
 
# Total Model Fit 
centeredDistancesVector=distancesVector-mean(distancesVector) 
SStotal=t(centeredDistancesVector)%*%centeredDistancesVector 
SSregression=SStotal-SSresid 
 
RSquare=SSregression/SStotal 
 
modelRSqr=2488.128/14869.179 
MSbetween=2488.128/3 
MSwithin=SSresid/(sampleN-4) 
fRatio=MSbetween/MSwithin 
significanceModel=pf(fRatio, df1=3, df2=(sampleN-4), lower.tail = FALSE) 
 
#########################Graph the least squares lines######################### 
 
#SET UP for Distances vs Condition 
 
# Jitter the x-variable 
 
jitterers = sample(seq(from = -.025, to = .025, by = (.05/99) ), sampleN) 
fearJittered = fearVector+jitterers 
for (i in 1:sampleN) 
{ 
  if (femaleVector[i] == 1) 
  { 
    fearJittered[i]=fearJittered[i]+.1 



  } 
} 
 
# Intercept and slope for female=0 
slopeFem0=2.124993 
interceptFem0=79.337 
 
# Intercept and slope for female=1 
slopeFem1=slopeFem0+12.685628 
interceptFem1=interceptFem0-11.416677 
 
 
# Make different point characters for males and females 
 
genderPtChars = as.vector(matrix(0,nrow=sampleN, ncol=1)) 
for (i in 1:sampleN) 
{ 
  if (femaleVector[i]==0) 
  { 
    genderPtChars[i]=16 
  } 
  else 
  { 
    genderPtChars[i]=18 
  } 
} 
 
genderPtCols = as.vector(matrix(0,nrow=sampleN, ncol=1)) 
for (i in 1:sampleN) 
{ 
  if (femaleVector[i]==0) 
  { 
    genderPtCols[i]="red" 
  } 
  else 
  { 
    genderPtCols[i]="green" 
  } 
} 
 
# GRAPHING 
 
dev.new(width=5,height=5) 
plot (x=fearJittered, y=distancesVector, 
      pch=t(genderPtChars), 
      col=t(genderPtCols), 
      title(main="Reaching distances regressed onto dummy codes for 
condition, gender, and their interaction 



Least-squares lines added separately by gender"), 
      ylab="Perceived distance judged reachable (cm)", 
      xlab="Experimental Condition", 
      xaxt="n") 
axis(1, at=c(0,1), labels=c("Control (0)", "Fear (1)")) 
 
abline(b=slopeFem0, a=interceptFem0, lty=2, lwd=2, col="red") 
abline(b=slopeFem1, a=interceptFem1, lty=3, lwd=3, col="green") 
 
legend(locator(1), legend=c("Male", "Female"), col=c("red", "green"), 
       pch=c(16,18)) 
 
legend(locator(1), legend=c("y=2.1x+79", "y=15x+68"), col=c("red", "green"), 
       lty=c(2,3)) 
 
######LOOK HERE! YES HERE, AT THE EDITOR 
######CLICK THE PLOT TO ADD THE LEGENDS 
 
 
#SET UP for Distances vs Gender 
 
# Jitter the x-variable 
 
femaleJittered = femaleVector+jitterers 
 
#Distinguish the control from the fear participants 
for (i in 1:sampleN) 
{ 
  if (fearVector[i] == 1) 
  { 
    femaleJittered[i]=femaleJittered[i]+.1 
  } 
} 
 
# Intercept and slope for fear=0 
slopeFear0=-11.4 
interceptFear0=79.337 
 
# Intercept and slope for fear=1 
slopeFear1=slopeFear0+12.685628 
interceptFear1=interceptFear0+2.12 
 
 
# Make different point characters for control and fear 
 
conditionPtChars = as.vector(matrix(0,nrow=sampleN, ncol=1)) 
for (i in 1:sampleN) 
{ 



  if (fearVector[i]==0) 
  { 
    conditionPtChars[i]=16 
  } 
  else 
  { 
    conditionPtChars[i]=18 
  } 
} 
 
conditionPtCols = as.vector(matrix(0,nrow=sampleN, ncol=1)) 
for (i in 1:sampleN) 
{ 
  if (fearVector[i]==0) 
  { 
    conditionPtCols[i]="purple" 
  } 
  else 
  { 
    conditionPtCols[i]="gray" 
  } 
} 
 
# GRAPHING  
 
dev.new(width=5,height=5) 
plot (x=femaleJittered, y=distancesVector, 
      pch=t(conditionPtChars), 
      col=t(conditionPtCols), 
      title(main="Reaching distances regressed onto dummy codes for 
            gender, condition, and their interaction 
            Least-squares lines added separately by condition"), 
      ylab="Perceived distance judged reachable (cm)", 
      xlab="Gender", 
      xaxt="n") 
axis(1, at=c(0,1), labels=c("Male (0)", "Female (1)")) 
 
abline(b=slopeFear0, a=interceptFear0, lty=2, lwd=2, col="purple") 
abline(b=slopeFear1, a=interceptFear1, lty=3, lwd=3, col="gray") 
 
legend(locator(1), legend=c("Control", "Fear"), col=c("purple", "gray"), 
       pch=c(16,18)) 
 
legend(locator(1), legend=c("y=-11x+79", "y=1.3x+81"), col=c("purple", "gray"), 
       lty=c(2,3)) 
 
######LOOK HERE! YES HERE, AT THE EDITOR 
######CLICK THE PLOT TO ADD THE LEGENDS 



 
########################Graph the raw data and residuals####################### 
prePostX = c(as.vector(matrix(data=seq(from=0, to=1, by=1/66), nrow=sampleN, ncol=1)), 
            as.vector(matrix(data=seq(from=2, to=3, by=1/66), nrow=sampleN,  
                             ncol=1))) 
 
prePostY=c((distancesVector-mean(distancesVector)), distancesOnModelResiduals) 
 
prePostPtChars = as.vector(matrix(0,nrow=sampleN*2, ncol=1)) 
for (i in 1:sampleN*2) 
{ 
  if (i <= sampleN) 
  { 
    prePostPtChars[i]=2 
  } 
  else 
  { 
    prePostPtChars[i]=16 
  } 
} 
 
prePostPtCols = as.vector(matrix(0,nrow=sampleN*2, ncol=1)) 
for (i in 1:sampleN*2) 
{ 
  if (i <= sampleN) 
  { 
    prePostPtCols[i]="blue" 
  } 
  else 
  { 
    prePostPtCols[i]="orange" 
  } 
} 
 
dev.new(width=5, height=5) 
plot(prePostX, prePostY, 
     pch=t(prePostPtChars), 
     col=t(prePostPtCols), 
     title(main="Comparison of DV variablity 
before and after regression"), 
     ylab="Distance from: mean or least-squares line", 
     xlab="Reference for measure of variance", 
     xaxt="n") 
axis(1, at=c(.25,2.3), labels=c("Mean of  
raw data", "Value predicted 
from regression 
model")) 
 



legend(locator(1), legend=c("Raw 
var=222", "Residuals 
var=194"), col=c("blue", "orange"), 
     pch=c(2,16)) 
 
 
   
 
   
 


