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Introduction: 

Sometimes discrete dynamic systems are used to approximate continuous problems like 

solutions to some differential equations and kinematics especially if it cannot be solved exactly. This 

project will focus on motion through vector fields that represent either velocity or acceleration. These 

can be approximated by the discrete dynamic systems: 

For velocity fields: 

𝒗𝑡 = 𝒇(𝒓𝑡) 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 

For acceleration fields: 

𝒂𝒕 = 𝒇(𝒓𝒕) 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 

𝒗𝑡+∆𝑡 = 𝒗𝑡 + ∆𝑡𝒂𝑡 

Where the continuous system is the limit as Δt approaches zero. Making Δt smaller will make the model 

more accurate but require more computation to simulate the system for a certain time. There are other 

ways to approximate these more accurately (other than exact methods). This project will try to find 

some that involve using matrices to perform operations on these fields. 

How the results are generated: 



 All graphs in this project are the result of numerical calculations done in excel. This is done by 

columns of cells that reference members of the other columns of a group representing parameters of 

the system in the row above or on the same level. 

  



Velocity vector fields: 

𝒗𝑡 = 𝒇(𝒓𝑡) 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 

One way to make any approximation of next position more accurate is similar to a second order Taylor 

approximation: 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 +
1

2
∆𝑡2𝒂𝑡  

The only difficulty is finding the acceleration since no value is given. This is how linear algebra is used. 

Matrices multiplication allow for new ways to manipulate vectors and vector fields. For a vector field, 

the Jacobian matrix can be used to determine the vector differential of the field (Notated by D, referred 

to in some of the graphs as a d-matrix): 

𝐷𝑣 = [
(∇𝑣𝑥1)

𝑇

(∇𝑣𝑥2)
𝑇

⋮

] 

(From calculus: ∇𝑣𝑥𝑛 =

𝜕𝑣𝑥𝑛

𝜕𝑥1
𝜕𝑣𝑥𝑛

𝜕𝑥2
…

) 

This can be used to find the differential of dx with respect to any infinitesimal displacement vector by 

multiplication of D by dx. Why this works is shown below: 

𝑑F = ∇𝐹 ∙ 𝑑𝒓 

 So: 𝑑v𝑥1 = ∇𝑣𝑥1 ∙ 𝑑𝒓 = (∇𝑣𝑥1)
𝑇𝑑𝒓 

And 𝑑v𝑛 = (∇𝑣𝑥𝑛)
𝑇𝑑𝒓 

When combined: 𝑑𝒗 = [
(∇𝑣𝑥1)

𝑇𝑑𝒓

(∇𝑣𝑥1)
𝑇𝑑𝒓

⋮

] = [
(∇𝑣𝑥1)

𝑇

(∇𝑣𝑥2)
𝑇

⋮

] 𝑑𝒓 = 𝐷𝑣𝑑𝒓 

For determining the acceleration, 𝑑𝒓 = 𝒗𝑑𝑡 

So:  𝑑𝒗 = 𝐷𝑣𝒗𝑑𝑡 

Thus the acceleration of the field at any position is given by: 

𝒂 =
𝑑𝒗

𝑑𝑡
= 𝐷𝑣𝒗 

Which gives:  



𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 +
1

2
∆𝑡2𝐷𝑣𝒗𝑡 

Example field in two dimensions: 𝒗 = (
−𝑦
𝑥
) 

𝐷𝑣 = [
0 −1
1 0

] 

𝐷𝑣𝒗 = (
−𝑥
−𝑦) 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 −
1

2
∆𝑡2𝒓𝑡 

(Note: all the example fields happen to be linear dynamic systems because they are easier to enter into 

excel. This is not intended to be the case for all uses.) 
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Higher orders: 

The Jacobian matrix can be used to determine higher position based derivatives as well: 

𝑑𝒂 = 𝐷𝑎𝑑𝒓 = 𝐷𝑎𝒗𝑑𝑡 

𝑑𝒂

𝑑𝑡
= 𝐷𝑎𝒗 

The higher orders of the approximation can then be applied: 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 +
1

2
∆𝑡2𝐷𝑣𝒗𝑡 +

1

6
∆𝑡3𝐷𝑎𝒗𝑡 +

1

24
∆𝑡4𝐷𝑑𝑎/𝑑𝑡𝒗𝑡 +⋯ 

The second order of this has been applied to the previous vector field: 
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The second order appears to be even more accurate. 

Another example field: 𝒗 = (
𝑦
𝑥
) 

 

Results: 

This Jacobian matrix method appears to work well for velocity vector fields. 
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Acceleration vector fields: 

𝒂𝒕 = 𝒇(𝒓𝒕) 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 

𝒗𝑡+∆𝑡 = 𝒗𝑡 + ∆𝑡𝒂𝑡 

 

The Jacobian matrix method from velocity vectors can be used here to adjust the velocity term: 

𝑑𝒂 = 𝐷𝑎𝑑𝒓 = 𝐷𝑎𝒗𝑑𝑡 

𝑑𝒂

𝑑𝑡
= 𝐷𝑎𝒗 

 

𝒗𝑡+∆𝑡 = 𝒗𝑡 + ∆𝑡𝒂𝑡 +
1

2
∆𝑡2𝐷𝑎𝒗𝑡  

The position can also be better approximated by taking into account the effect of acceleration: 

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 +
1

2
∆𝑡2𝒂𝑡  

This time, the acceleration is given. One or both of the methods above can be used: 

Example field: 𝒂 = (
−𝑥
−𝑦) 

𝐷 = [
−1 0
0 −1

] 
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Results: both methods make the model more accurate but using both methods is more effective. 

𝒗𝑡+∆𝑡 = 𝒗𝑡 + ∆𝑡𝒂𝑡 +
1

2
∆𝑡2𝐷𝑎𝒗𝑡  

𝒓𝑡+∆𝑡 = 𝒓𝑡 + ∆𝑡𝒗𝑡 +
1

2
∆𝑡2𝒂𝑡  
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Conclusion: 

The Jacobian matrix method appears to work well for approximating paths through velocity vector 

fields. 

Both the Jacobian matrix and parabolic trace increase the accuracy for acceleration vector fields by 

about the same amount and this effect is compounded when both are used. 

 


