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Using Homogeneous Coordinate Systems to Perform Linear Translations, Rotations, and Scaling on 3 
Dimensional Objects in Computer Graphics and How These Operations Relate to Robotics 

 
Intro: 

-Homogeneous Coordinates 
Homogeneous coordinates are ubiquitous in computer graphics because they allow 

common vector operations such as translation, rotation, and scaling to be represented as a matrix 
by which the vector is multiplied. The same applies to their presence in robotics. The use of 
these coordinates allows us to use matrices to accurately determine an object's location relative to 
our own. This skill is invaluable in robotic movement. Knowing where you are relative to an 
object or vice versa can allow you to move to the object's location by simple matrix 
multiplication. This will be talked about more in-depth in later sections. 

 
Translations: 

-Graphics 
Computer graphics can be represented by a multitude of objects on a screen all with their 

own coordinate system and location relative to the “world” so to speak. This concept is known as 
object oriented programming. Based on the program you are running, there can be any number of 
objects represented in this world and each one can be moved to the location of another using 
matrix translation. For example, say we have an object like a ball that is at location (x,y,z) in the 
3 dimensional world that is represented in your program. If we think of these coordinates as a 
column vector like so:  

 
Then we can move it along a coordinate plane simply by multiplying it by the matrix; 

 
In this example, ​a​ is the distance you would like to move along the x-axis ​b​ along the y-axis and 
c​ along the z-axis. However, when we try and multiply these together or, more specifically, a 



n​x​n​ matrix by a vector that has less than ​n​ entries, the multiplication is invalid. To account for 
this, our matrix becomes: 

  
This allows us to multiply the vector by the matrix without affecting the vector space by simply 
adding 1 times the ​a​, ​b​, or ​c​ values. 
 

-Robotics 
This concept applies in robotics as well. We can do the same translations and get the 

same results, however, here we think of the “world” as the origin or the point that doesn’t move 
on the robot. For example, in the paper by Jennifer Kay (Introduction to Homogeneous 
Transformations & Robot Kinematics) she mentions that if you have a robotic arm where the 
origin is a part of a 3 dimensional coordinate system and you have a joint at distance ​L1​ from the 
origin and a gripper that is the distance ​L2​ from the joint along the x-axis, we could calculate the 
distance between the origin and the gripper with the simple matrix translation: 

 
Applying this to the origin would move the x-axis by ​L1​+​L2​ and arrive at the location of the 
gripper. 
 
Rotations: 

-Graphics 
Using the same idea that I talked about in the Translations section where objects have 

their own coordinate system, we can use the same matrix multiplication to perform rotations to 
the origin object in order to get it oriented the same way as the target object. For example, there 
are a few matrices that we can multiply a vector by to get different results.  
The matrix: 

 



will rotate the object along the z-axis by Θ.  
The matrix: 

 
will rotate the object along the y-axis by Θ. 
Finally, the matrix: 

 
will rotate the object along the x-axis by Θ. Using this, we can rotate objects relative to the 
“world” space of the program. This means that if we want to flip a car in a game or rotate a face 
to see all sides, all we have to do is multiply the coordinate vector that represents the location of 
the object by these matrices. Then it will rotate the object in that space by Θ with respect to the 
relevant axis. 
 

-Robotics 
This idea of rotating an object along an axis is extremely important when talking about 

robotic movement. For example, in the gripper problem, we imagine that the gripper was 
connected to a joint and that this joint could rotate about its z-axis (meaning the axis that appears 
to be coming out of the page). If I wanted to rotate the gripper 90 degrees so that I could 
approach an object like a small box from above, I would simply have to rotate the gripper’s 
z-axis so that its gripping end was facing downward. After that, it would be a simple matter of 
translating the gripper downward to be at the box’s location and closing the gripper. However, 
applying the 90 degree rotation is the focus of this section. Since we are applying it to the z-axis, 
we can use the matrix given above for the z-axis rotation. 90 degrees translates to pi/2 radians. 
cos(pi/2) is 0 and sin(pi/2) is 1 thus we are given the matrix: 

 



The reason that the values are negated is because we were following the right hand rule and 
rotating the arm clockwise. This is assuming, of course, that you wanted to rotate the arm 
clockwise. If you are rotating the arm counter clockwise, you simply switch the 1 and the -1 in 
the sine value locations. 
Scaling: 

-Graphics 
Scaling is a fairly easy-to-grasp concept and is used in computer graphics to portray 

distance from an object in 3D space. To scale a vector, you simply apply scalar multipliers to the 
vector. For example, our generic vector from earlier scaled to twice its size would be: 

 
The one on the bottom remains the same, meaning that the object has simply extended the range 
of its vertices. If we were to have a 2 at the bottom, the vector would be the same as it was 
without the scalar applied. This application would, of course, have to happen to all of the object's 
vertices. If it were applied to the center of the object, it would only double the distance it was 
from the origin or the center of the “world” space. Applying this to each vertex extends the 
object's size and makes it appear to grow. This creates the illusion that the object is getting closer 
in some contexts. These same concepts could be applied to computer vision. 
 
Conclusion: 
Here, I will present my source code and demonstrate how 2D graphics can use translations, 
rotations, and scaling to create a 3D illusion. 


