
Conner Schacherer

Linear Algebra

Semester Project

Title: DCT Compression

Group Members: Conner Schacherer

One of the biggest concerns in today’s digital age is how to transfer data efficiently. Images

are one of the most common forms of data found online and finding ways to improve data compression

and transference is a large area of research in computer science. One of the best and most common

forms of image compression is the JPEG format. JPEG stands for Joint Photographic Experts Group,

which chose to use the DCT algorithm in 1988 for their image compression algorithm. The DCT

allows for a lot of compression for an image with minimal data loss and an efficient algorithm for

calculation. That is why the JPEG is the most popular format for representing pictures digitally.

Digital images are made pixels, each one representing a color of the image. The more pixels an

image has, the clearer and sharper the image. Each pixel holds a byte of data representing the amount

of black in grayscale image or three bytes of data if it is a colored image, representing the red, green

and blue values. Uncompressed images can get extremely large, especially for HD images. If a black

and white image 1080x1080 pixels, the total number of bytes needed to store it would be 1080 * 1080,

which is 1,166,400. If it was a colored image, it would be three times that size, which would be

3,499,200 bytes.

The Discrete Cosine Transformation algorithm is used to compress images in an efficient way.

It transforms an image from the spatial domain to a frequency domain, by expressing data points as

sums of cosine functions oscillating at different frequencies. The cosine function is used since it take

fewer functions to represent a signal than other functions. There are multiple DCT formulas, but the

most popular DCT is the the DCT-II, and the inverse of it is the DCT-III, which is used to decompress

the image. To transform the image to the frequency domain, the DCT-II function is:

To compress an image that has NxN pixels, first split it up into 8x8 pixel blocks. You multiply

the blocks by the DCT to get the 8x8 frequency coefficient matrix for that block, each coefficient

corresponding to the x and y of the original block. The DCT is used on an 8x8 block since it is much

faster to compute than the frequency coefficients for the entire matrix at once. The frequency

coefficient matrix keeps the low valued frequencies in the upper left corner of the matrix and the

highest frequency values in the bottom right corner. The human eye can see lower frequencies better

and the higher frequencies are much harder to detect.

For black and white images, one DCT matrix is enough to represent the grayscale value. For a

colored image, three DCT matrices are created, with each one representing the red, green, and blue

values.

To compress the image, simply get rid of the higher frequency values by zeroing out a certain

amount of columns, starting at the right most column and going in, and rows, starting and the bottom

and going up. So for a high compression, the bottom seven rows and right seven columns would be

zeroed out, leaving one number out of the 64 in the 8x8 block to represent the image for the image, to

have a 94% compression rate. Or for a low compression level, zero out one row and column, leaving

most of the high frequencies in the image, to have a 20% compression rate. Since you can never get

that data back, JPEG is a lossy image format, which means that you lose data when you compress it

and can never get that exact data back. There are some variations on the JPEG that are lossless but

those are uncommon.

To restore the image from the compressed matrix, you apply the inverse DCT on each 8x8

block. You can achieve very high levels of compression with minimal image quality loss using the

DCT.

Here is an example of an 8x8 matrix that compressed and decompressed using the DCT,

zeroing out 70% of the coefficient matrix.

You can see how similar the values are. The difference between the pixel values are so

minimal the human eye cannot tell a difference, even though the compression rate is at 70%. This is

why the JPEG image format remains so popular to this day. It is the best way to easily and efficiently

store an image.

To help show how the level of compression affects an image, I wrote a C++ program in Visual Studio

that applied the DCT to a black and white image and applied different levels of compression.

Highest Compression:

Zeroed out 94% of coefficient matrix. Zeroed out 75% of matrix.

Zeroed out 50% of matrix Zeroed out 25% of matrix

Nothing zeroed out in coefficient matrix Original Image

Works Cited

Cabeen, Ken, and Peter Gent. "Image Compression and Discrete Cosine Transform." N.p., n.d. Web. 3

May 2017. <https://www.math.cuhk.edu.hk/~lmlui/dct.pdf+>.

Lossy Data Compression: JPEG. N.p., n.d. Web. 03 May 2017.

<http://cs.stanford.edu/people/eroberts/courses/soco/projects/data-

compression/lossy/jpeg/dct.htm>.

Marshall, Dave. The Discrete Cosine Transform (DCT). N.p., 4 Oct. 2001. Web. 03 May 2017.

<https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node231.html>.

