
The Strengths and
Weaknesses of Different

Image Compression Methods
Samuel Teare and Brady Jacobson

Lossy vs Lossless
Lossy compression reduces a file size by permanently removing parts of the data
that may be redundant or not as noticeable.

Lossless compression guarantees the original data can be recovered or
decompressed from the compressed file.

PNG Compression
PNG Compression consists of three parts:

1. Filtering
2. LZ77 Compression
3. Huffman Coding

Deflate Compression

Filtering
Five types of Filters:

1. None - No filter
2. Sub - difference between this byte and the byte to its left

a. Sub(x) = Original(x) - Original(x - bpp)

3. Up - difference between this byte and the byte above it
a. Up(x) = Original(x) - Above(x)

4. Average - difference between this byte and the average of the byte to the left
and the byte above.
a. Avg(x) = Original(x) − (Original(x-bpp) + Above(x))/2

5. Paeth - Uses the byte to the left, above, and above left.
a. The nearest of the left, above, or above left to the estimate is the Paeth Predictor
b. Paeth(x) = Original(x) - Paeth Predictor(x)

Paeth Algorithm
Estimate = left + above - above left

Distance to left = Absolute(estimate - left)

Distance to above = Absolute(estimate - above)

Distance to above left = Absolute(estimate - above left)

The byte with the smallest distance is the Paeth Predictor

LZ77 Compression
LZ77 Compression looks for sequences in the data that are repeated.

LZ77 uses a sliding window to keep track of previous bytes. This is then used to
compress a group of bytes that exhibit the same sequence as previous bytes. The
compression takes the form of the bytes leading up to the repeated sequence, the
distance behind the current byte that the sequence starts, and the length (number)
of repeated bytes.

Example: White [D=1, L=4] Red [D=1, L=4] [D=10, L=5]

Huffman Coding
Huffman coding looks at the frequence of literals (characters or pixels).

The frequency of the literals is organized
into a Huffman tree. This allows the bytes
of the literals to be represented by only a
few bits. The more frequent the literal the
fewer number of bits used to represent that
literal.

Size Comparison
8-bit Mario: (800x800)
PNG: 35,358 (35KB) TIFF: 125,274 (125KB) JPG: 167,046 (167KB)

 JPEG Discrete Cosine Transform
JPEG is type of image compression that
uses Discrete Cosine Transformations. The
degree of compression can be changed by
altering the quantization table.

A type of Lossy transformation.
For JPEG, this method takes a
collection of cosine lines, each
representing a different image.
By adding these cosine lines
together, we can recreate the
original image.

=

JPEG Compression consists of the
following steps:

1. Make sure the color format is YCbCr.
2. Separate the image into groups of 8 by 8 pixels.
3. Perform two-dimensional Discrete Cosine Transform on the values.
4. Perform Quantization.
5. Perform Huffmans Coding.

The brightness is between 0 and 255.
We now center the list around 0 instead of
128. This would match a Cosine line. We
take these values and perform two
dimensional DCT-II on them.

First, convert the original image from RGB to
YCbCr. The Y component of this colorspace
represents brightness, which is more useful for
compressing than the hue or color of an image.

Original Image 8 by 8 pixel image Input table (Random Example)

Secondly, we divide the image into
groups of 8 by 8 pixels. From here we take
the brightness of each and place it in a chart.

This is an example of a
Quantization table. This differs
between different methods, which
can allow for different compression
results. In most cases, values at the
top left are smaller than values on
the bottom left.

The results are the
coefficients, which match up
with the chart of possible
patterns. This is an example of
the chart. Each value represents
the influence of its respective
pattern.
(Values near the top left, such
as A, usually have more
influence than values at the
bottom right, such as BL.)

=

Coefficient table Quantization table Quantized table

/ =

The Quantization step is the only lossy operation in the entire method. Some
frequencies of brightness are unnecessary. To get rid of unnecessary values, we
take each coefficient and divide it by its respective value from the quantization
table, and round each to the nearest whole number. This allows us to get rid of
smaller influences, mostly values like BL at the bottom right. With A/a, the
resulting Z will usually remain large. More importantly, for equations like BL/bl,
the result will be rounded to 0.

The final step is
encoding using
Huffman Coding.
This uses a
zig-zag pattern
starting from the
top left. This
allows us to
organize 0’s next
to each other,
making
compression
easier. While
Huffman is
lossless, the
previous lossy
quantization
makes the entire
process lossy.

To decompress from here, simply
reverse the encoding process.

Z,Y,V,S,U,X,W,T,R,0,0,Q,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 Start

End

Original Image Compressed Image

JPEG vs PNG
JPEG: 2.8MB PNG: 5.9MB

