
PNG vs JPEG Compression
Brady Jacobson and Samuel Teare

Image compression is data compression that allows us to transfer and store

images at a lower cost. Many methods of image compression exist, which allow us to

compress images with different results. Lossless compression is where an image is

reduced, but the method is reversible, resulting in an accurate image. Examples of

Lossless image compression includes PNG, GIF, and TIFF. Lossy compression is

where an image is reduced by eliminating some data and using inexact approximations.

The output is an image close to the original but not exactly the same. In many cases the

difference is almost unnoticeable. The primary example of Lossy image compression is

JPEG. In this paper, we will explore PNG compression first and then look at JPEG

compression.

PNG Compression

One form of lossless compression for images is PNG compression. PNG, or

Portable Network Graphic, was designed to be an open source replacement of the GIF

(Graphics Interchange Format). Two main reasons for wanting a replacement for GIF is

that it was patented and only supported up to 256 colors. PNG is ideal for images that

you don’t want to lose any part of the original image while compressing, such as icons

and logos. Images such as photographs are more suited by JPEG compression. PNG

compression can be broken down to 3 steps: Filtering, LZ77 Compression, Huffman

Coding. The last two steps are known as DEFLATE Compression, or just DEFLATE.

Filtering of an image in PNG Compression is to make the compression easier

and more efficient. The five options for filtering are explain below:

Filter Method

None No filtering. This uses the raw bytes of the original image

Sub Calculates the difference/distance between this byte and the byte to its left
Sub(x) = Original(x) - Original(x - bpp)

Up Calculates the difference/distance between this byte and the byte directly
above it.
Up(x) = Original(x) - Above(x)

Average Calculates the difference/distance between this byte and the average of the
byte to the left and the byte above.
Average(x) = Original(x) - ((Original(x - bpp) - Above(x))/2)

Paeth Uses the bytes to the left, above, and above left to calculate the Paeth
predictor. It then calculates the difference/distance between this byte and the
Paeth predictor.
Paeth(x) = Original(x) - PaethPredictor(x)

It is important to note that filtering is a byte comparison and not a pixel

comparison. If the image uses 8 bit coloring, then it would be a comparison of pixels as

each pixel is one byte. For higher colors, the comparison would be based off of the blue

(one byte) of this pixel with the blue (one byte) of the other pixel(s). This comparison is

helped by the bpp, or bytes per pixel. The value of bpp is always a whole number and is

rounded up to 1 if it is less than 1. The calculation of the PaethPredictor is explained

below:

PaethPredictor (x) {
estimate = Original(x - bpp) + Above(x) - Above(x - bpp);
distanceLeft = Absolute(estimate - Original(x - bpp));
distanceAbove = Absolute(estimate - Above(x));
distanceAboveLeft = Absolute(estimate - Above(x - bpp);
if distanceLeft is less than distanceAbove and distanceAboveLeft

return distanceLeft;
else is distanceAbove is less than distanceAboveLeft

return distanceAbove;
else

return distanceAboveLeft;
}

After the filtering is completed, PNG compression uses LZ77 Compression.

LZ77, or Lempel-Ziv 1977, was created by Abraham Lempel and Jacob Ziv in 1977.

LZ77 uses a sliding window technique that keeps track of a certain number of previous

bytes. The larger the window the easier and more efficient the compression. Using the

window, LZ77 looks for repeated sequences in the pixels. The format of the

compression is the set of pixels leading up to a repetition, then designate the distance

back that the repetition starts and the length of the repetition. For example:

(Using W to represent a white pixel, R to represent a red pixel, D for distance, and L for

length)

W W W W W R R R R R W W W W W

This line of pixels could be compressed to W [D=1, L=4] R [D=1, L=4] [D=10, L = 5].

Since the last set of 5 white pixels has already been expressed earlier in the line, the

compression merely denotes the distance back to the beginning of the first set of 5

white pixels and then states that the following 5 pixels should be copied. Another

example:

W R W W R W W R W W R W

This line would be compressed to WRW [D=3, L = 9].

After the LZ77 compression is complete, PNG compression then uses Huffman

coding to finish the job. Huffman coding is used to look at the frequency of literals,

characters, numbers, or bytes, in a file and then compress the file by using a few bits to

represent those literals. A literal usually consists of a whole byte to several bytes, using

only one bit to a few bits to stand in for the literals greatly reduces the size of the file.

The literals that are most frequent in the file are represented with the fewest number of

bits, while literals that are less frequent or only appear a few times in the file are

represented with more bits. The literals and their frequency are used to construct a

Huffman tree.

A Huffman tree is constructed by ordering the literals by their frequency in

ascending order. A recursive method is then used to combine the two smallest items

and then place them as one item back in the list. Once this process is completed a

Huffman tree allows the proxy bits to be calculated. A Huffman tree is read by how

many times you move left or right from the nodes, starting from the head node, to get to

the desired literal. The head node is the node usually represented at the top center of

the tree. Every left move is a 0 and every right move is a 1. An example of a 16x16 8-bit

color image and a Huffman tree created from the color of the pixels can be seen below.

The generator used for the Huffman tree flipped all of the nodes from “64” down to fit
the tree in a smaller dimension image. Normally, all the nodes under “64” would be
shown on the opposite side as the smaller weights are placed on the left and larger
weights on the right.

The Huffman code used to represent the white pixels would be just one bit, ‘0’, as

white is the most common color in the image. On the other hand the Huffman code used

to represent the yellow would be five bits, ‘10000’.

PNG compression has two options for using the Huffman tree. It can read the file,

calculate the frequencies of the literals within the image and then generate a Huffman

tree specific to the image or it can use a standard Huffman tree. If a Huffman tree is

generated specifically for the image, its information must be included in the compressed

file. If a standard Huffman tree is used, then the compressed file must only reference

which standard Huffman tree is being used. In the case of PNG, the literals are the

output of the LZ77 compression, or the sequence of bytes with distances and lengths. In

the example above, if WRW [D=3, L = 9] is the most frequent literal in the image after

LZ77 Compression, what would normally be represented as 7+ bytes, might be

represented with maybe 7 bits. If this pattern is repeated 100 times within an image,

what would take up 700 bytes normally would be compressed to only 88 bytes.

Comparison of Image File Size:
8-Bit Mario (800x800)

JPEG: 167KB TIFF: 125KB PNG: 35KB
(Lossy) (Lossless) (Lossless)

Sources:
www.libpng.org, “PNG The Definitive Guide”, Chapter 9.

http://www.libpng.org/

JPEG Compression

One form of Lossy Compression for images is JPEG compression. This

compression method allows for the user to alter the degree of compression by changing

the quantization table, which will adjust the storage space and image quality. This

quantization table is the reason that JPEG is lossy compression, as certain information

will be irreversibly lost. JPEG compression also uses Discrete Cosine Transformations,

which essentially takes a number of patterns created from different cosine lines and

adds them together to form a specific image. JPEG takes many different steps, which

include changing the color format to YCbCr, separating the image into groups,

performing DCT, performing quantization, and finally organizing with huffman coding.

First the user should convert the image to the color format YCbCr. This makes

compression easier due to what each symbol represents. Y is the brightness while Cb

and Cr represent the chroma components of blue and red respectively. The human eye

relies on brightness for the perception of an image, so we can get better compression

by working with the brightness component Y. The Cb and Cr components are also used

to assist with compression. If you wanted the greatest possible quality, however, you

can use the RGB color format. However, this does not allow for a smaller file size, which

is one of the main reasons to use JPEGs.

The next step is dividing the image into groups. Each group is made up of 8 by 8

pixels. The rest of the compression method is performed on the Y, Cb, and Cr

components separately.

 →

For each component we take the component’s value of each pixel and place it in

a table respective to where it is. These values range between 0 and 255, but in order to

use discrete cosine transforms we need to alter it to closely resemble a cosine line. This

involves subtracting every value by 128, making the range between -128 and 127. With

these values, we apply the Two Dimension Discrete Cosine Transform 2, which will give

us the Coefficients.

 Input Table Example:

Two Dimensional

Discrete Cosine Transform 2

equation (2D DCT-II):

We create a table similar to the previous and place each coefficients in it. This

table is special, as each spot does not correlate with the original image, but rather the

pattern table that shows the possible patterns different cosine lines can create. Each

value in the coefficient table represents the influence of each pattern. The patterns in

the top left are very simple while the patterns in the bottom right are highly complex.

This often results in more influence being placed in the top left rather than the bottom

right. The idea is that by adding enough of these patterns together, and taking into

account influence, we can recreate an image.

Coefficient Table Example: DCT Table:

21 14 4 A B C D E

11 5 7.5 F G H I J

4 8.5 3 K L M N O

P Q R S T U V W

X Y Z AA BB CC DD EE

FF GG HH II JJ 4 1 1.8

KK LL MM NN OO 1.2 3 2.2

PP QQ RR SS TT 1 1.5 1

Using the current coefficient table would recreate the exact image we started,

but because we’re attempting to compress the image we begin the next step, which is

quantization. We take a quantization table, which can differ between programs and

attempts. Changing the quantization table will cause a change in the balance between

image quality and reduced file size. We take our coefficient table and divide each value

by its respective quantization table and round to the nearest whole number.

Quantization Table Example:

2 1.9 2 a b c d e

1.5 2.3 4 f g h i j

2 2 3 k l m n o

p q r s t u v w

x y z aa bb cc dd ee

ff gg hh ii jj 26 26 25

kk ll mm nn oo 23 30 27

pp qq rr ss tt 28 30 30

 Values in the top left of the quantization table are often smaller than values on

the bottom right. This allows us to keep the necessary coefficients while eliminating the

less influential ones. To demonstrate If we take 21 from the Coefficient table and divide

it by 1 from the quantization table, we round to 11. This value still has influence over the

image. On the other hand, if we take 1 from the coefficient(the bottom right) and divide it

by 30 from the coefficient table we get .033, which rounds to 0. This means that the

pattern no longer has influence on the image. All of the least influential values are

eliminated while leaving the ones with greater influence. The resulting image should be

close to the same as the old one, with some differences that aren’t always apparent.

 Coefficient table: Quantization table:

 /

Quantized Table Example:

 We calculate the quantized table by

dividing the coefficient table by the quantization

table and rounding to the nearest whole number.

We have gotten rid of unnecessary information, but

the recreated image will be largely the same. This

is what makes JPEG compression Lossy instead of

lossless. Now we need to take the quantized

coefficients and encode them. We can use

Huffman Coding, a lossless method, to reduce the

list.This will allow us to keep the same values we have now. If we take the quantized

table and go in a zigzag pattern to organize the values for Huffman Coding then we will

end up with several 0’s in a row. This will allow us to compress more efficiently.

The example quantized table would result in this for Huffman Coding:

11,7,7,2,2,2,0,2,4,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.

This is how to encode for JPEG, a lossy compression method. To decode, we

simply reverse the order of steps. Because we return with new coefficients the final

image will look different. However, it will be very close to the original. The final

compressed image can look more or less accurate depending if the user wants less or

more reduction in the file sizes respectively.

JPEG: Original: PNG:
2.8 MB 5.9 MB

Conclusion:

Both Lossy and Lossless compression methods have their place. They both

effectively compress an image, and the result still looks like the original. PNG keeps the

original image mostly in tact. While JPEG does not result in the exact same image, the

result is very close to the same and takes up much less space. This key difference

highlights the main appeal of both. PNG is used to keep as much of the original as

possible and works great for sprites and logos. JPEG is used to save space depending

on the preference of the user, and is great for more detailed images because it should

result in a smaller file size. Both image compression methods have their places where

they shine and struggle.

