Using Markov Chain to Compose Music Pieces
Prathusha Boppana, Jie Zhang

Introduction

Markov chains contain the probability of transferring from one state to the next possible state in
a sequence of events. When Markov chains are used in learning algorithms, it usually is the
abstraction of the probabilistic data which can be used to infer how the next steps would be from
the previous steps that just went through. Music composition is an interesting subject that can
have Markov chains applied relatively easily as a music piece can be easily seen as a sequence
of states, with each state as a note, with its specific length played. Since the notes available are
not infinite, the length options are not infinite either, even adding in the probability of multiple
instruments, the categories of state should also be finite. Markov chains thus can be built from
previous musical pieces of different genre and be the basis for learning algorithm to make
probabilistic decisions and create new music pieces in the same genre.

Different orders of Markov chains would vary in terms of the level of accuracy in capturing the
probability of transferring from one state to the next possible state. A first order chain means
only to count the previous one state and example the probability transition from the first to the
second. An example of a first-order chain with states of the system such as note or pitch values,
and a probability vector for each note constructed, completing a transition probability matrix is
shown in Table 1. An algorithm would need to be constructed to produce output note values
based on the transition matrix weightings from Table 1.

Table 1. First-order Matrix
1st-order matrix
Note|]A |[C# |E
b
A 0.1 |0.6 |0.3
CH# |0.25/0.05/0.7

Eb 0.7 (0.3 |0
(Source: Wikipedia, URL: https://en.wikipedia.org/wiki/Markov_chain#Music)

A second-order Markov chain can be used by creating a table (see Table 2) with the current
state and the previous state, similar to Table 1. Higher, nth-order Markov chains tend to "group"
particular notes together, while creating various patterns and sequences. These higher-order
chains offer sequences of notes with a sense of phrasal structure, rather than the random
sequences produced by a first-order system.

https://en.wikipedia.org/wiki/Probability_vector
https://en.wikipedia.org/wiki/Phrase_%28music%29

Table 2. Second-order Matrix
2nd-order matrix
Notes| A D G
AA 0.18(0.6 0.22
AD 0.5 0.5 0
AG 0.15(0.75| 041
DD 0 0 1
DA 025| O 0.75
DG 0.9 0.1 0
GG 0.4 0.4 0.2
GA 0.5 0.25| 0.25

GD 1 0 0
(Source: Wikipedia, URL: https://en.wikipedia.org/wiki/Markov_chain#Music)

Experiment Steps

1. Collect digital music pieces (Midi files) which can be processed easily with Java libraries to
extract note/pitch info.

2. Using self-developed Java code (below), extract note info and save data in matrix data
structure.

3. Examine each probabilistic vector to see if the data reflect reality.

Set up starting note for auto composing using probability vectors.

5. Examine the results from the auto-composing program.

B

Code

package midiConverter;

import java.io.File;

import java.util. ArrayList;

import javax.sound.midi.MidiEvent;
import javax.sound.midi.MidiMessage;
import javax.sound.midi.MidiSystem;
import javax.sound.midi.Sequence;
import javax.sound.midi.ShortMessage;
import javax.sound.midi.Track;

public class converter {
public static final int NOTE_ON = 0x90;
public static final int NOTE_OFF = 0x80;
public static int[][] notes = new int[12][12];
public static int[][] Composednotes = new int[12][12];

public static int prevNote1 = 0;

public static int prevNote2 = 0;

public static int currentNote = 0;

public static int[] totalforEachRow = new int[12];

public static int runningtotal=0;

static ArrayList<integer> musicpiece = new ArrayList<Integer>();

static ArrayList<Integer> allsamples = new ArrayList<Integer>();

public static int[][] notes2 = new int[144][12];

static ArrayList<Integer> order2musicpieces = new ArrayList<Integer>();

public static final String[] NOTE_NAMES = {"C", "C#", "D", "D#", "E", "F", "F#", "G",
"G#", "A", "A#", "B"};
public static void main(String[] args) throws Exception {
String[lfiles = { "bach_846.mid","ai_cho_em_tinh_yeu.mid","ai_biet.mid"
,"999 doa_hong.mid","1-2-3_ngoi_sao.mid",
"238878.mid","bjsbmm01.mid","988-aria.mid","988-v01.mid","988-v02.mid",
"988-v03.mid","988-v04.mid","988-v05.mid","988-v06.mid","988-v07.mid","988-v08.mid","988-
v09.mid"};
for (int i=0; i<files.length; i++){
Sequence sequence = MidiSystem.getSequence(new File(files]i]));
convertMidiToArray(sequence);

}

buildSecondOrderMarkov(allsamples);

for(int i = 0; i<notes2.length; i++){
for(int j = 0; j<notes2[i].length; j++){
System.out.print(notes2[i][j] +"," +" ");

}
System.out.printin(");
}
1l composerMethod();
composerMethod?2();
}
public static void convertMidiToArray(Sequence s){
/! int trackNumber = 0;
for (Track track : s.getTracks()) {
/! trackNumber++;
1l System.out.printin("Track " + trackNumber + ": size =" + track.size());
I System.out.printIn();

for (int i=0; i < track.size(); i++) {
MidiEvent event = track.get(i);

I

I

I

I
I
I
I
I
I

System.out.print("@" + event.getTick() + " ");
MidiMessage message = event.getMessage();
if (message instanceof ShortMessage) {
ShortMessage sm = (ShortMessage) message;
System.out.print("Channel: " + sm.getChannel() + " ");
if (sm.getCommand() == NOTE_ON) {
int key = sm.getData1();
int octave = (key / 12)-1;
int note = key % 12;

allsamples.add(note);
notes[prevNote1][note] += 1;
prevNote1 = note;

String noteName = NOTE_NAMES]note];
int velocity = sm.getData2();

System.out.printin("Note on, " + noteName + octave + " key="+ key +"

velocity: " + velocity):

I
I
I
I
I
I

} else if (sm.getCommand() == NOTE_OFF) {
int key = sm.getData1();
int octave = (key / 12)-1;
int note = key % 12;
String noteName = NOTE_NAMES]note];
int velocity = sm.getData2();

System.out.printin("Note off, " + noteName + octave + " key="+ key +"

velocity: " + velocity);

I

}

}else {
System.out.printin("Other message: " + message.getClass());
}
}
}
}

public static void buildSecondOrderMarkov(ArrayList<Integer> samples){
for (int i=2; i<samples.size(); i++)X

prevNote2 = samples.get(i-2);
prevNote1 = samples.get(i-1);
currentNote = samples.get(i);
notes2[prevNote2*12+prevNote1][currentNote]+= 1;

}

public static void generateProbability()}{
for(int i = 0; i<notes.length; i++){
for(int j = 0; j<notes[i].length; j++){

runningtotal+=notesJi][j];

}
totalforEachRow([i]=runningtotal;
runningtotal=0;
}

}

public static void composerMethod(){
int currentNode =composerMethod(1);
musicpiece.add(currentNode);
for (inti=0;i<100; i++){
currentNode = composerMethod(currentNode);
musicpiece.add(currentNode);

}

System.out.print(musicpiece.toString());

}

public static int composerMethod(int startNote){
int largestPossbileNote = notes[startNote][0];
int indexOfLPN = 0;
for (int i=0; i<notes[startNote].length; i++){
if (startNote!=i)}{
if (notes[startNote][i]>largestPossbileNote{
largestPossbileNote = notes[startNote][i];
indexOfLPN = i;
1}
}
return indexOfLPN;

}

public static void composerMethod2()}
order2musicpieces.add(0);
order2musicpieces.add(1);
int currentNode=0;
for (inti=2;i<100; i++){

currentNode=composerMethod2(order2musicpieces.get(i-2),

order2musicpieces.get(i-1));

order2musicpieces.add(currentNode);

}

System.out.print(order2musicpieces.toString());

}
public static int composerMethod2(int firstStartNote, int SecondStartNote){

int largestPossbileNote = notes2[firstStartNote*12+SecondStartNote][0];
int indexOfLPN = 0;
for (int i=0; i<notes2[firstStartNote*12+SecondStartNote].length; i++){
if (firstStartNote*12+SecondStartNote!=i){
if (notes2[firstStartNote*12+SecondStartNote][i]>largestPossbileNote }{
largestPossbileNote=
notes2[firstStartNote*12+SecondStartNote][i];
indexOfLPN = i;
1

}
return indexOfLPN;

Data
For First-order Markov chain:

c 1643 | 77 420 |70 514 | 116 |606 | 232 | 110 554 299 649

C# 86 1750 | 408 156 | 377 | 152 | 608 | 157 | 298 277 117 700

D 589 | 545 | 2739 | 26 607 | 156 |866 | 581 | 125 425 419 665

D# 80 141 21 588 | 293 |74 263 | 78 127 158 58 185

E 429 | 372 933 308 | 3203 | 139 | 1065 | 741 | 346 591 300 850
F 120 | 138 137 | 58 207 | 547 | 263 |96 113 188 88 151
F# 554 | 386 | 813 340 | 1275 | 266 | 4199 | 931 | 396 1058 | 823 1474

G 304 | 185 |[374 |82 703 | 97 1200 | 2732 | 130 633 406 820

G# 124 | 394 130 94 333 153 | 352 131 | 865 316 165 345

A 603 | 288 | 563 131 | 449 |[166 |976 | 846 | 386 2954 | 366 1084

At 253 | 101 |446 |45 322 | 96 831 | 394 | 154 398 992 544

B 504 | 709 | 759 168 | 994 | 144 | 1286 | 748 | 352 1260 | 543 4083

[11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11,6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6,
11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11,6, 11,6, 11,6, 11,6, 11,6, 11,6, 11, 6,
11,6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11, 6, 11,6, 11, 6, 11, 6, 11,6, 11,6, 11, 6, 11, 6,
11,6, 11,6, 11,6, 11,6, 11, 6, 11]

For Second-order Markov chain:

[0,1,9,9,11,11,9,9,11,11,9,9,11,11,9,9,11,11,9,9,11,11,9,9,11,11,9,9, 11, 11, 9,
911,11,9,9 11,11,9,9, 11, 11,9,9, 11, 11,9, 9,11,11,9,9, 11, 11,9,9, 11, 11,9, 9, 11,
11,9,9,11,11,9,9,11,11,9,9,11,11,9,9,11,11,9,9,11,11,9,9, 11,11, 9,9, 11, 11,9, 9,
11,11,9,9,11,11,9, 9]

Conclusions

Using Midi files of music pieces by Bach and other composers, we compiled a matrix of all of the
occurrences of one note after another. We set a starting note for the auto-composing program
to take to index into matrix, and let it run from there. After analyzing the data from our first order
calculations, we realized that it was most probable for a note to come after itself. We then forced
the program to ignore the probability of a note coming after itself and find the next highest
probability, but that just resulted in a pattern of two notes alternating.

When we experimented with the second order Markov chain, we set the first two notes to
initialize the parameters for the auto-composing program, allowing it to run. We found that there
was a tendency of notes alternating with each note repeating twice.

From these findings, we concluded that Markov chain can realistically record the probabilities of
note sequences. At the same time, higher order Markov chains and a better decision-making
algorithm are needed to compose a music piece with a more precise and realistic variation of
notes.

