ANSWERS

Problem 1. (100 points) Define matrix A, vector \vec{b} and vector variable \vec{x} by the equations

$$A = \begin{pmatrix} -2 & 3 & 0 \\ 0 & -4 & 0 \\ 1 & 4 & 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

For the system $A\vec{x} = \vec{b}$, find x_3 by Cramer’s Rule, showing all details (details count 75%). To save time, do not compute x_1, x_2!

Answer:

$$x_3 = \frac{\Delta_3}{\Delta}, \quad \Delta = \det \begin{pmatrix} -2 & 3 & 0 \\ 0 & -4 & 1 \\ 1 & 4 & 1 \end{pmatrix} = 8, \quad \Delta_3 = \det \begin{pmatrix} -2 & 3 & -3 \\ 0 & -4 & 5 \\ 1 & 4 & 1 \end{pmatrix} = 51, \quad x_3 = \frac{51}{8}.$$

Problem 2. (100 points) Define matrix $A = \begin{pmatrix} 3 & 1 & 0 \\ 3 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix}$. Find a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Answer:

Let E_1 be the result of combo(1,2,-1) on I, and E_2 the result of combo(2,3,-1) on I. Then

$$E_2E_1A = U = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}. \quad \text{Let} \quad L = E_1^{-1}E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Problem 3. (100 points) Find the complete solution $\vec{x} = \vec{x}_h + \vec{x}_p$ for the nonhomogeneous system

$$\begin{pmatrix} 3 & 1 & 0 \\ 3 & 3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}.$$

Please display answers for both \vec{x}_h and \vec{x}_p. The homogeneous solution \vec{x}_h is a linear combination of Strang’s special solutions. Symbol \vec{x}_p denotes a particular solution.

Answer:
The augmented matrix has reduced row echelon form (last frame) equal to the matrix
\[
\begin{pmatrix}
1 & 0 & -1/6 & 1/2 \\
0 & 1 & 1/2 & 1/2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]. Then \(x_3 = t_1, x_2 = -t_1/2 + 1/2, x_1 = t_1/6 + 1/2\) is the general solution in scalar form. The partial derivative on \(t_1\) gives the homogeneous solution basis vector \(\begin{pmatrix}
-1/6 \\
-1/2 \\
1
\end{pmatrix}\). Then \(\bar{x}_h = c_1 \begin{pmatrix}
-1/6 \\
-1/2 \\
1
\end{pmatrix}\). Set \(t_1 = 0\) in the scalar solution to find a particular solution \(\bar{x}_p = \begin{pmatrix}
1/2 \\
1/2 \\
0
\end{pmatrix}\).

Problem 4. (100 points) Given a basis \(\bar{v}_1 = \begin{pmatrix}
3 \\
2 \\
1
\end{pmatrix}, \bar{v}_2 = \begin{pmatrix}
4 \\
4 \\
1
\end{pmatrix}\) for a subspace \(S\) of \(\mathbb{R}^3\), and \(\bar{v} = \begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix}\) in \(S\), then \(\bar{v} = c_1 \bar{v}_1 + c_2 \bar{v}_2\) for a unique set of coefficients \(c_1, c_2\), called the coordinates of \(\bar{v}\) relative to the basis \(\bar{v}_1, \bar{v}_2\). Compute \(c_1\) and \(c_2\).

Answer:
\(c_1 = -1, c_2 = 1\).

Problem 5. (100 points) The functions \(1, x^2, \sqrt{x^3}\) are independent in the vector space \(V\) of all functions on \(0 < x < \infty\). Check the independence tests which apply.

- **Wronskian test** Wronskian determinant of \(f_1, f_2, f_3\) nonzero at \(x = x_0\) implies independence of \(f_1, f_2, f_3\).
- **Sampling test** Sampling determinant for samples \(x = x_1, x_2, x_3\) nonzero implies independence of \(f_1, f_2, f_3\).
- **Rank test** Three vectors are independent if their augmented matrix has rank 3.
- **Determinant test** Three vectors are independent if their augmented matrix is square and has nonzero determinant.
- **Orthogonality test** Three vectors are independent if they are all nonzero and pairwise orthogonal.
- **Pivot test** Three vectors are independent if their augmented matrix \(A\) has 3 pivot columns.
The first and second apply to the given functions, while the others apply only to fixed vectors.

Problem 6. (100 points) Consider a 3×3 real matrix A with eigenpairs

$$
\begin{pmatrix}
2,
\begin{pmatrix}
1 \\
4 \\
-4
\end{pmatrix}, \\
1 + i,
\begin{pmatrix}
i \\
1 \\
0
\end{pmatrix}, \\
1 - i,
\begin{pmatrix}
-i \\
1 \\
0
\end{pmatrix}
\end{pmatrix}.
$$

(a) [60%] Display an invertible matrix P and a diagonal matrix D such that $AP = PD$.

(b) [40%] Display a matrix product formula for A. To save time, **do not evaluate** any matrix products.

Answer:

(a) The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues $2, 1 + i, 1 - i$, taken in the same order. (b) The matrix formula comes from $AP = PD$, by solving for $A = PDP^{-1}$.

Problem 7. (100 points) The matrix $A =
\begin{pmatrix}
3 & -1 & 0 \\
-1 & 3 & 0 \\
-1 & -1 & 4
\end{pmatrix}$ has eigenvalues 4, 4, 4. Find all eigenvectors for $\lambda = 4$. To save time, **don’t find** the eigenvector for $\lambda = 2$. Then report whether or not matrix A is diagonalizable.

Answer:

Because $A - 4I =
\begin{pmatrix}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
-1 & -1 & 0
\end{pmatrix}$ has RREF $B =
\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$, then there are two eigenpairs for $\lambda = 4$, with eigenvectors $\vec{v}_1 =
\begin{pmatrix}
-1 \\
1 \\
0
\end{pmatrix}$ and $\vec{v}_2 =
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}$. These answers are Strang’s special solutions for the homogeneous problem $B\vec{v} = \vec{0}$. The matrix is diagonalizable, because there are three eigenpairs.

Problem 8. (100 points) Using the subspace criterion, write three different hypotheses
each of which imply that a set \(S \) in a vector space \(V \) is not a subspace of \(V \). The full statement of three such hypotheses is called the **Not a Subspace Theorem**.

Answer:

1. If the zero vector is not in \(S \), then \(S \) is not a subspace.
2. If two vectors in \(S \) fail to have their sum in \(S \), then \(S \) is not a subspace.
3. If a vector is in \(S \) but its negative is not, then \(S \) is not a subspace.

Problem 9. (100 points) Define \(S \) to be the set of all vectors \(\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \) in \(\mathbb{R}^3 \) such that \(x_1 + x_3 = x_2, \ x_3 + x_2 = x_1 \) and \(x_1 - x_3 = 0 \). Prove that \(S \) is a subspace of \(\mathbb{R}^3 \).

Answer:

Let \(A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \). Then the restriction equations can be written as \(A\vec{x} = \vec{0} \).

Apply the nullspace theorem (also called the kernel theorem), which says that the nullspace of a matrix is a subspace.

Another solution: The given restriction equations are linear homogeneous algebraic equations. Therefore, \(S \) is the nullspace of some matrix \(B \), hence a subspace of \(\mathbb{R}^3 \). This solution uses the fact that linear homogeneous algebraic equations can be written as a matrix equation \(B\vec{x} = \vec{0} \).

Problem 10. (100 points) Let \(A \) be a 100 \(\times \) 29 matrix. Assume the columns of \(A^T A \) are independent. Prove that \(A \) has independent columns.

Answer:

The columns of matrix \(B \) are independent if and only if the nullspace of \(B \) is the zero vector. If you don’t know this result, then find it in Lay’s book, or prove it yourself. Also used: A square matrix has independent columns if and only if it is invertible.

Assume \(\vec{x} \) is in the nullspace of \(A \), \(A\vec{x} = \vec{0} \), then multiply by \(A^T \) to get \(A^T A\vec{x} = \vec{0} \). Because \(A^T A \) is invertible, then \(\vec{x} = \vec{0} \), which proves the nullspace of \(A \) is the zero vector. We conclude that the columns of \(A \) are independent.

Problem 11. (100 points) Let \(3 \times 3 \) matrices \(A \), \(B \) and \(C \) be related by \(AP = PB \) and \(BQ = QC \) for some invertible matrices \(P \) and \(Q \). Prove that the characteristic equations of \(A \) and \(C \) are identical.
Answer:

The proof depends on the identity $A - rI = PBP^{-1} - rI = P(B - rI)P^{-1}$ and the determinant product theorem $|CD| = |C||D|$. We get $|A - rI| = |P||B - rI||P^{-1}| = |PP^{-1}||B - rI| = |B - rI|$. Then A and B have exactly the same characteristic equation. Similarly, B and C have the same characteristic equation. Therefore, A and C have the same characteristic equation.

Problem 12. (100 points) The **Fundamental Theorem of Linear Algebra** says that the null space of a matrix is orthogonal to the row space of the matrix.

Let A be an $m \times n$ matrix. Define subspaces $S_1 = \text{column space of } A$, $S_2 = \text{null space of } A^T$. Prove that a vector \vec{v} orthogonal to S_2 must be in S_1.

Answer:

The fundamental theorem of linear algebra is summarized by $\text{rowspace} \perp \text{nullspace}$. Replace A by A^T. Then the result says that $\text{colspace}(A) \perp \text{nullspace}(A^T)$ or $S_1 \perp S_2$. Results known are $\dim \text{nullspace} = \text{nullity}$, $\dim \text{rowspace} = \text{rank}$, and $\text{rank} + \text{nullity} = \text{column dimension of the matrix}$. Because $S_1 \perp S_2$, then the two subspaces $S_1, S_2 = \text{intersect in the zero vector}$. Their dimensions are $\text{rank}(A)$ and $\text{nullity}(A^T)$. Because $\text{rank}(A) = \text{rank}(A^T)$, then their two dimensions add to m, as follows: $\dim(S_1) + \dim(S_2) = \text{rank}(A) + \text{nullity}(A^T) = \text{rank}(A^T) + \text{nullity}(A^T) = m$. Orthogonality of the two subspaces implies a basis for S_1 added to a basis for S_2 supplies a basis for \mathbb{R}^m. Vector \vec{v} is given to be orthogonal to S_2. Then it must have a basis expansion involving only the basis for $S_1 = \text{colspace}(A)$. This proves that \vec{v} is in S_1, which is the column space of A.

A **shorter proof** is possible, starting with the result that \mathbb{R}^n equals the direct sum of the subspaces S_1 and S_2. The above details proved this result, as part of the solution. Then the only details left are to add the bases together and expand \vec{v} in terms of the basis elements. The basis elements from S_2 are orthogonal to \vec{v}, therefore \vec{v} is expressed as a linear combination of basis elements from S_1, which proves that \vec{v} is in $S_1 = \text{the column space of } A$.
