MATH 2270-2 Sample Exam 1 Spring 2017

1. (10 points)

(a) Give a counter example or explain why it is true. If A and B are $n \times n$ invertible, and C^{T} denotes the transpose of a matrix C, then $\left(A B^{-1}\right)^{T}=\left(B^{T}\right)^{-1} A^{T}$.
(b) Give a counter example or explain why it is true. If square matrices A and B satisfy
$A B=I$, then $B A=I$ and $A^{T} B^{T}=I$.
2. (10 points) Let A be a 3×4 matrix. Find the elimination matrix E which under left multiplication against A performs both (1) and (2) with one matrix multiply.
(1) Replace Row 2 of A with Row 2 minus Row 3 .
(2) Replace Row 3 of A by Row 3 minus 4 times Row 1.
3. (30 points) Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & b & c \\
1 & c & -a \\
2 & b+c & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-a \\
a \\
a
\end{array}\right)
$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.
(a). The system has a unique solution for $(c-b)(2 a-c) \neq 0$.
(b). The system has no solution if $c=2 a$ and $a \neq 0$ (don't explain the other possibilities).
(c). The system has infinitely many solutions if $a=b=c=0$ (don't explain the other possibilities).

Definition. Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are called independent provided solving the equation $c_{1} \vec{v}_{1}+\cdots+$ $c_{k} \vec{v}_{k}=\overrightarrow{0}$ for constants c_{1}, \ldots, c_{k} has the unique solution $c_{1}=\cdots=c_{k}=0$. Otherwise the vectors are called dependent.
4. (20 points) Classify the following sets of vectors as Independent or Dependent, using the Pivot Theorem or the definition of independence (above).

Set 1: $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$

$$
\text { Set 2: }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

5. (20 points) Find the vector general solution \vec{x} to the equation $A \vec{x}=\vec{b}$ for

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 4 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right), \quad \vec{b}=\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)
$$

6. (20 points) Determinant problem, chapter 3. Parts reduced on Exam 1.
(a) $[10 \%]$ True or False? The value of a determinant is the product of the diagonal elements.
(b) $[10 \%]$ True or False? The determinant of the negative of the $n \times n$ identity matrix is -1 .
(c) $[30 \%]$ Assume given 3×3 matrices A, B. Suppose $E_{2} E_{1} A^{2}=A B$ and E_{1}, E_{2} are elementary matrices representing respectively a combination and a multiply by 3 . Assume $\operatorname{det}(B)=27$. Let $C=-A$. Find all possible values of $\operatorname{det}(C)$.
(d) [20\%] Determine all values of x for which $(2 I+C)^{-1}$ fails to exist, where I is the 3×3 identity and $C=\left(\begin{array}{ccc}2 & x & -1 \\ 3 x & 0 & 1 \\ 1 & 0 & -1\end{array}\right)$.
(e) [30\%] Let symbols a, b, c denote constants and define

$$
A=\left(\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
a & b & 0 & 1 \\
1 & c & 1 & \frac{1}{2}
\end{array}\right)
$$

Apply the adjugate [adjoint] formula for the inverse

$$
A^{-1}=\frac{\operatorname{adj}(A)}{|A|}
$$

to find the value of the entry in row 4 , column 2 of A^{-1}.
End Exam 1.

