Elementary Matrices and Toolkit Sequences

- Elementary Matrices
 - Definition of elementary matrix
 - Computer algebra systems and elementary matrices
 - Constructing elementary matrices E and their inverses E^{-1}
- Fundamental Theorem on Elementary Matrices
- A certain 6-frame toolkit sequence.
- Toolkit Sequence Details
- Fundamental Theorem Illustrated
- The RREF Inverse Method

Elementary Matrices

Definition. An elementary matrix E is the result of applying a combination, multiply or swap rule to the identity matrix.

An elementary matrix is then the second toolkit frame after a combo, swap or mult toolkit operation which has been applied to a first frame equal to the identity matrix. **Example**:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
First frame = identity matrix.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{pmatrix}$$
Second frame
Elementary combo matrix
combo (1, 3, -5)

Computer algebra systems and elementary matrices

The computer algebra system maple displays typical 4×4 elementary matrices (C=Combination, M=Multiply, S=Swap) as follows.

with(linalg): Id:=diag(1,1,1,1); C:=addrow(Id,2,3,c); M:=mulrow(Id,3,m); S:=swaprow(Id,1,4);with(LinearAlgebra): Id:=IdentityMatrix(4); C:=RowOperation(Id,[3,2],c); M:=RowOperation(Id,3,m); S:=RowOperation(Id,[4,1]);

The answers:

$$C = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & c & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{pmatrix}, \quad M = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & m & 0 \ 0 & 0 & m & 0 \ 0 & 0 & 0 & 1 \ \end{pmatrix}, \ S = egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ \end{pmatrix}.$$

Constructing elementary matrices E and their inverses E^{-1}

Mult Change a one in the identity matrix to symbol $m \neq 0$.

Combo Change a zero in the identity matrix to symbol *c*.

Swap Interchange two rows of the identity matrix.

Constructing E^{-1} from elementary matrix E

Mult Change diagonal multiplier $m \neq 0$ in E to 1/m.

Combo Change multiplier c in E to -c.

Swap The inverse of E is E itself.

Fundamental Theorem on Elementary Matrices

Theorem 1 (Toolkit sequences and elementary matrices)

In a toolkit sequence, let the second frame A_2 be obtained from the first frame A_1 by a combo, swap or mult toolkit operation. Let n equal the row dimension of A_1 . Then there is correspondingly an $n \times n$ combo, swap or mult elementary matrix E such that

$$A_2 = EA_1.$$

Theorem 2 (The rref and elementary matrices)

Let A be a given matrix of row dimension n. Then there exist $n \times n$ elementary matrices E_1, E_2, \ldots, E_k such that

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

Proof of Theorem 1

The first result is the observation that left multiplication of matrix A_1 by elementary matrix E gives the answer $A_2 = EA_1$ which is obtained by applying the corresponding combo, swap or mult toolkit operation. This fact is discovered by doing examples, then a formal proof can be constructed (not presented here).

Proof of Theorem 2

The second result applies the first result multiple times to obtain elementary matrices E_1 , E_2 , ... which represent the multiply, combination and swap operations performed in the frame sequence which take the First Frame $A_1 = A$ into the Last Frame $A_{k+1} = \operatorname{rref}(A_1)$. Combining the identities

$$A_2 = E_1 A_1, \hspace{0.3cm} A_3 = E_2 A_2, \hspace{0.3cm} \ldots, \hspace{0.3cm} A_{k+1} = E_k A_k$$

gives the matrix multiply equation

$$A_{k+1}=E_kE_{k-1}\cdots E_2E_1A_1$$

or equivalently the theorem's result, because $A_{k+1} = \operatorname{rref}(A)$ and $A_1 = A$.

A certain 6-frame toolkit sequence

$$A_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \\ 3 & 6 & 3 \end{pmatrix}$$
Frame 1, original matrix.

$$A_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -6 \\ 3 & 6 & 3 \end{pmatrix}$$
Frame 2, combo(1,2,-2).

$$A_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 3 & 6 & 3 \end{pmatrix}$$
Frame 3, mult(2,-1/6).

$$A_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & -6 \end{pmatrix}$$
Frame 4, combo(1,3,-3).

$$A_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
Frame 5, combo(2,3,-6).

$$A_{6} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
Frame 6, combo(2,1,-3). Found rref(A₁).

 $\frac{\text{Continued}}{\text{The corresponding } 3 \times 3 \text{ elementary matrices are}}$

$$\begin{split} E_1 &= \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{Frame 2, combo}(1,2,-2) \text{ applied to } I. \\ E_2 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/6 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{Frame 3, mult}(2,-1/6) \text{ applied to } I. \\ E_3 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} & \text{Frame 4, combo}(1,3,-3) \text{ applied to } I. \\ E_4 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -6 & 1 \end{pmatrix} & \text{Frame 5, combo}(2,3,-6) \text{ applied to } I. \\ E_5 &= \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{Frame 6, combo}(2,1,-3) \text{ applied to } I. \end{split}$$

Toolkit Sequence Details

- $egin{aligned} A_2 &= E_1 A_1 \ A_3 &= E_2 A_2 \ A_4 &= E_3 A_3 \ A_5 &= E_4 A_4 \ A_6 &= E_5 A_5 \ A_6 &= E_5 E_4 E_3 E_2 E_1 A_1 \end{aligned}$
- Frame 2, E_1 equals combo(1,2,-2) on I. Frame 3, E_2 equals mult(2,-1/6) on I. Frame 4, E_3 equals combo(1,3,-3) on I. Frame 5, E_4 equals combo(2,3,-6) on I. Frame 6, E_5 equals combo(2,1,-3) on I. Summary frames 1-6.

Then

$$\mathrm{rref}(A_1)=E_5E_4E_3E_2E_1A_1,$$

which is the result of the Theorem.

Fundamental Theorem Illustrated

The summary:

$$A_{6} = \begin{pmatrix} 1 - 3 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ -6 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ -3 \ 0 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ -\frac{1}{6} \ 0 \\ 0 \ 0 \ 1 \end{pmatrix} \begin{pmatrix} 1 \ 0 \ 0 \\ -2 \ 1 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix} A_{1}$$

Because $A_6 = \operatorname{rref}(A_1)$, the above equation gives the inverse relationship

$$A_1 = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} E_5^{-1} \operatorname{rref}(A_1).$$

Each inverse matrix is simplified by the rules for constructing E^{-1} from elementary matrix E, the result being

$$A_1 = egin{pmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & -6 & 0 \ 0 & 1 & 0 \ 3 & 0 & 1 \end{pmatrix} egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 6 & 1 \end{pmatrix} egin{pmatrix} 1 & 3 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \mathrm{rref}(A_1)$$

Theorem 3 (RREF Inverse Method)

$\operatorname{rref}(\langle A|I \rangle) = \langle I|B \rangle$ if and only if AB = I.

Proof: For *any* matrix *E* there is the matrix multiply identity

$$E < C|D> = < EC|ED>.$$

This identity is proved by arguing that each side has identical columns. For example, col(LHS, 1) = E col(C, 1) = col(RHS, 1).

Assume $C = \langle A | I \rangle$ satisfies rref $(C) = \langle I | B \rangle$. The fundamental theorem of elementary matrices implies $E_k \cdots E_1 C = \operatorname{rref}(C)$. Then

$$\operatorname{rref}(C) = \langle E_k \cdots E_1 A \, | \, E_k \cdots E_1 I) = \langle I | B \rangle$$

implies that $E_k \cdots E_1 A = I$ and $E_k \cdots E_1 I = B$. Together, BA = I and then B is the inverse of A.

Conversely, assume that AB = I. Then A has inverse B. The fundamental theorem of elementary matrices implies the identity $E_k \cdots E_1 A = \operatorname{rref}(A) = I$. It follows that $B = E_k \cdots E_1$. Then $\operatorname{rref}(C) = E_k \cdots E_1 < A | I > = \langle E_k \cdots E_1 A | E_k \cdots E_1 I \rangle = \langle I | B \rangle$.