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5.2 Matrix Equations

Linear Equations. An m× n system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
am1x1 + am2x2 + · · ·+ amnxn = bm,

can be written as a matrix multiply equation A ~X = ~b. Let A be the
matrix of coefficients aij , let ~X be the column vector of variable names

x1, . . . , xn and let ~b be the column vector with components b1, . . . , bn.
Then, because equal vectors are defined by equal components,

A ~X =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn



x1
x2
...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


b1
b2
...
bn

 .

Therefore, A ~X = ~b. Conversely, a matrix equation A ~X = ~b corresponds
to a set of linear algebraic equations, because of reversible steps above
and equality of vectors.

A system of linear equations can be represented by its variable list x1,
x2, . . . , xn and its augmented matrix

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn

 .(1)

The augmented matrix of system A ~X = ~b is denoted 〈〈〈A|~b〉〉〉. Given an
augmented matrix C = 〈〈〈A|~b〉〉〉 and a variable list x1, . . . , xn, the conver-
sion back to a linear system of equations is made by expanding C~Y = 0,
where ~Y has components x1, . . . , xn, −1. This expansion involves just
dot products, therefore rapid display is possible for the linear system
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corresponding to an augmented matrix. Hand work often contains the
following kind of exposition:

x1 x2 · · · xn
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
am1 am2 · · · amn bn


(2)

In (2), a dot product is applied to the first n elements of each row, using
the variable list written above the columns. The symbolic answer is set
equal to the rightmost column’s entry, in order to recover the equations.

It is usual in homogeneous systems to not write the column of zeros,
but to deal directly with A instead of 〈〈〈A|0〉〉〉. This convention is justified
by arguing that the rightmost column of zeros is unchanged by swap,
multiply and combination rules, which are defined for matrix equations
the next paragraph.

Elementary Row Operations. The three operations on equations
which produce equivalent systems can be translated directly to row op-
erations on the augmented matrix for the system. The rules produce
equivalent systems, that is, the three rules neither create nor destroy
solutions.

Swap Two rows can be interchanged.

Multiply A row can be multiplied by multiplier m 6= 0.

Combination A multiple of one row can be added to a different row.

Documentation of Row Operations. Throughout the display
below, symbol s stands for source, symbol t for target, symbol m for
multiplier and symbol c for constant.

Swap swap(s,t) ≡ swap rows s and t.

Multiply mult(t,m) ≡ multiply row t by m6= 0.

Combination combo(s,t,c) ≡ add c times row s to row t 6= s.

The standard for documentation is to write the notation next to the
target row, which is the row to be changed. For swap operations, the
notation is written next to the first row that was swapped, and option-
ally next to both rows. The notation was developed from early maple

notation for the corresponding operations swaprow, mulrow and addrow,
appearing in the maple package linalg. In early versions of maple, an
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additional argument A is used to reference the matrix for which the ele-
mentary row operation is to be applied. For instance, addrow(A,1,3,-5)
selects matrix A as the target of the combination6 rule, which is docu-
mented in written work as combo(1,3,-5). In written work on paper,
symbol A is omitted, because A is the matrix appearing on the previous
line of the sequence of steps.

Maple Remarks. Versions of maple use packages to perform toolkit
operations. A short conversion table appears below.

On paper Maple with(linalg) Maple with(LinearAlgebra)

swap(s,t) swaprow(A,s,t) RowOperation(A,[t,s])

mult(t,c) mulrow(A,t,c) RowOperation(A,t,c)

combo(s,t,c) addrow(A,s,t,c) RowOperation(A,[t,s],c)

Conversion between packages can be controlled by the following function
definitions, which causes the maple code to be the same regardless of
which linear algebra package is used.7

Maple linalg

combo:=(a,s,t,c)->addrow(a,s,t,c);

swap:=(a,s,t)->swaprow(a,s,t);

mult:=(a,t,c)->mulrow(a,t,c);

Maple LinearAlgebra

combo:=(a,s,t,c)->RowOperation(a,[t,s],c);

swap:=(a,s,t)->RowOperation(a,[t,s]);

mult:=(a,t,c)->RowOperation(a,t,c);

macro(matrix=Matrix);

RREF Test. The reduced row-echelon form of a matrix, or rref, is
defined by the following requirements.

1. Zero rows appear last. Each nonzero row has first element 1, called
a leading one. The column in which the leading one appears,
called a pivot column, has all other entries zero.

2. The pivot columns appear as consecutive initial columns of the
identity matrix I. Trailing columns of I might be absent.

6Textbooks on linear algebra also call this operation replace, with re-ordered
argument list. The logic is t = t + cs, a replacement of row t.

7The acronym ASTC is used for the signs of the trigonometric functions in quad-
rants I through IV. The argument lists for combo, swap, mult use the same order,
ASTC, memorized in trigonometry as All Students Take Calculus.
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The matrix (3) below is a typical rref which satisfies the preceding prop-
erties. Displayed secondly is the reduced echelon system (4) in the vari-
ables x1, . . . , x8 represented by the augmented matrix (3).



1 2 0 3 4 0 5 0 6
0 0 1 7 8 0 9 0 10
0 0 0 0 0 1 11 0 12
0 0 0 0 0 0 0 1 13
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(3)

x1 + 2x2 + 3x4 + 4x5 + 5x7 = 6
x3 + 7x4 + 8x5 + 9x7 = 10

x6 + 11x7 = 12
x8 = 13

(4)

Matrix (3) is an rref and system (4) is a reduced echelon system. The
initial 4 columns of the 7 × 7 identity matrix I appear in natural order
in matrix (3); the trailing 3 columns of I are absent.

If the rref of the augmented matrix has a leading one in the last col-
umn, then the corresponding system of equations then has an equation
“0 = 1” displayed, which signals an inconsistent system. It must be
emphasized that an rref always exists, even if the corresponding equa-
tions are inconsistent.

Elimination Method. The elimination algorithm for equations (see
page 197) has an implementation for matrices. A row is marked pro-
cessed if either (1) the row is all zeros, or else (2) the row contains a
leading one and all other entries in that column are zero. Otherwise, the
row is called unprocessed.

1. Move each unprocessed row of zeros to the last row using swap
and mark it processed.

2. Identify an unprocessed nonzero row having the least number of
leading zeros. Apply the swap rule to make this row the very first
unprocessed row. Apply the multiply rule to insure a leading one.
Apply the combination rule to change to zero all other entries in
that column. The number of leading ones (lead variables) has been
increased by one and the current column is a column of the identity
matrix. Mark the row as processed, e.g., box the leading one: 1 .

3. Repeat steps 1–2, until all rows have been processed. Then all lead-
ing ones have been defined and the resulting matrix is in reduced
row-echelon form.
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Computer algebra systems and computer numerical laboratories auto-
mate computation of the reduced row-echelon form of a matrix A.

Literature calls the algorithm Gauss-Jordan elimination. Two exam-
ples:

rref(0) = 0 In step 2, all rows of the zero matrix 0 are zero.
No changes are made to the zero matrix.

rref(I) = I In step 2, each row has a leading one. No changes
are made to the identity matrix I.

Visual RREF Test. The habit to mark pivots with a box leads to a
visual test for a RREF. An illustration:


1 0 0 0 1/2

0 1 0 0 1/2

0 0 1 0 1/2
0 0 0 0 0


Each boxed leading one 1 appears
in a column of the identity matrix.
The boxes trail downward, ordered
by columns 1, 2, 3 of the identity.
No 4th pivot, therefore trailing iden-
tity column 4 is not used.

Toolkit Sequence. A sequence of swap, multiply and combination
steps applied to a system of equations is called a toolkit sequence.
The viewpoint is that a camera is pointed over the shoulder of an expert
who writes the mathematics, and after the completion of each toolkit
step, a photo is taken. The ordered sequence of cropped photo frames is
a filmstrip or toolkit sequence. The First Frame displays the original
system and the Last Frame displays the reduced row echelon system.

The terminology applies to systems A~x = ~b represented by an augmented
matrix C = 〈〈〈A|~b〉〉〉. The First Frame is C and the Last Frame is rref(C).

Documentation of toolkit sequence steps will use this textbook’s nota-
tion, page 317:

swap(s,t), mult(t,m), combo(s,t,c),

each written next to the target row t. During the sequence, consecutive
initial columns of the identity, called pivot columns, are created as
steps toward the rref . Trailing columns of the identity might not appear.
An illustration:

Frame 1:


1 2 −1 0 1
1 4 −1 0 2
0 1 1 0 1
0 0 0 0 0

 Original augmented matrix.
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Frame 2:


1 2 −1 0 1
0 2 0 0 1
0 1 1 0 1
0 0 0 0 0

 combo(1,2,-1)

Pivot column 1 completed.

Frame 3:


1 2 −1 0 1
0 1 1 0 1
0 2 0 0 1
0 0 0 0 0

 swap(2,3)

Frame 4:


1 2 −1 0 1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0

 combo(2,3,-2)

Frame 5:


1 0 −3 0 −1
0 1 1 0 1
0 0 −2 0 −1
0 0 0 0 0


Pivot column 2 completed by
operation combo(2,1,-2).
Back-substitution postpones
this step.

Frame 6:


1 0 −3 0 −1
0 1 1 0 1
0 0 1 0 1/2
0 0 0 0 0

 All leading ones found.

mult(3,-1/2)

Frame 7:


1 0 −3 0 −1
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0

 combo(3,2,-1)

Zero other column 3 entries.
Next, finish pivot column 3.

Last Frame:


1 0 0 0 1/2
0 1 0 0 1/2
0 0 1 0 1/2
0 0 0 0 0


combo(3,1,3)

rref found. Column 4 of the
identity does not appear!
There is no 4th pivot column.

Avoiding fractions. A matrix A with only integer entries can often be
put into reduced row-echelon form without introducing fractions. The
multiply rule introduces fractions, so its use should be limited. It is
advised that leading ones be introduced only when convenient, otherwise
make the leading coefficient nonzero and positive. Divisions at the end
of the computation will produce the rref .

Clever use of the combination rule can sometimes create a leading one
without introducing fractions. Consider the two rows

25 0 1 0 5
7 0 2 0 2

The second row multiplied by −4 and added to the first row effectively
replaces the 25 by −3, whereupon adding the first row twice to the
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second gives a leading one in the second row. The resulting rows are
fraction-free.

−3 0 −7 0 −3
1 0 −12 0 −4

Rank and Nullity. What does it mean, if the first column of a rref is
the zero vector? It means that the corresponding variable x1 is a free
variable. In fact, every column that does not contain a leading one
corresponds to a free variable in the standard general solution of the
system of equations. Symmetrically, each leading one identifies a pivot
column and corresponds to a leading variable.

The number of leading ones is the rank of the matrix, denoted rank(A).
The rank cannot exceed the row dimension nor the column dimension.
The column count less the number of leading ones is the nullity of the
matrix, denoted nullity(A). It equals the number of free variables.

Regardless of how matrix B arises, augmented or not, we have the rela-
tion

variable count = rank(B) + nullity(B).

If B = 〈〈〈A|~b〉〉〉 for A ~X = ~b, then the variable count n comes from ~X and
the column count of B is one more, or n + 1. Replacing the variable
count by the column count can therefore lead to fundamental errors.

Back-substitution and efficiency. The algorithm implemented in the
preceding toolkit sequence is easy to learn, because the actual work is or-
ganized by creating pivot columns, via swap, combination and multiply.
The created pivot columns are initial columns of the identity. You are
advised to learn the algorithm in this form, but please change the algo-
rithm as you become more efficient at doing the steps. See the examples
for illustrations.

Back Substitution. Computer implementations and also hand compu-
tation can be made more efficient by changing steps 2 and 3, then adding
step 4, as outlined below.

1. Move each unprocessed row of zeros to the last row using swap
and mark it processed.

2a. Identify an unprocessed nonzero row having the least number of
leading zeros. Apply the swap rule to make this row the very first
unprocessed row. Apply the multiply rule to insure a leading one.
Apply the combination rule to change to zero all other entries in
that column which are below the leading one.

3a. Repeat steps 1–2a, until all rows have been processed. The matrix
has all leading ones identified, a triangular shape, but it is not
generally a RREF.
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4. Back-Substitution. Identify a row with a leading one. Apply
the combination rule to change to zero all other entries in that
column which are above the leading one. Repeat until all rows
have been processed. The resulting matrix is a RREF.

Literature refers to step 4 as back-substitution, a process which is
exactly the original elimination algorithm applied to the system created
by step 3a with reversed variable list.

Inverse Matrix. An efficient method to find the inverse B of a square
matrix A, should it happen to exist, is to form the augmented matrix
C = 〈〈〈A|I〉〉〉 and then read off B as the package of the last n columns of
rref(C). This method is based upon the equivalence

rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉 if and only if AB = I.

The next theorem aids not only in establishing this equivalence but also
in the practical matter of testing a candidate solution for the inverse
matrix. The proof is delayed to page 332.

Theorem 8 (Inverse Test)
If A and B are square matrices such that AB = I, then also BA = I.
Therefore, only one of the equalities AB = I or BA = I is required to
check an inverse.

Theorem 9 (The Matrix Inverse and the rref)
Let A and B denote square matrices. Then

(a) If rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉, then AB = BA = I and B is the inverse of
A.

(b) If AB = BA = I, then rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉.

(c) If rref(〈〈〈A|I〉〉〉) = 〈〈〈C|B〉〉〉, then C = rref(A). If C 6= I, then A is not
invertible. If C = I, then B is the inverse of A.

(d) Identity rref(A) = I holds if and only if A has an inverse.

The proof is delayed to page 333.

Finding Inverses. The method will be illustrated for the matrix

A =

 1 0 1
0 1 −1
0 1 1

 .
Define the first frame of the toolkit sequence to be C1 = 〈〈〈A|I〉〉〉, then
compute the toolkit sequence to rref(C1) as follows.
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C1 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 1 1 0 0 1

 First Frame

C2 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 2 0 −1 1

 combo(3,2,-1)

C3 =

 1 0 1 1 0 0
0 1 −1 0 1 0
0 0 1 0 −1/2 1/2


mult(3,1/2)

C4 =

 1 0 1 1 0 0
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,2,1)

C5 =

 1 0 0 1 1/2 −1/2
0 1 0 0 1/2 1/2
0 0 1 0 −1/2 1/2

 combo(3,1,-1)

Last Frame

The theory implies that the inverse of A is the matrix in the right half
of the last frame:

A−1 =

 1 1/2 −1/2
0 1/2 1/2
0 −1/2 1/2


Answer Check. Let B equal the matrix of the last display, claimed to
be A−1. The Inverse Test, Theorem 8, says that we do not need to
check both AB = I and BA = I. It is enough to check one of them.
Details:

AB =

 1 0 1
0 1 −1
0 1 1


 1 1/2 −1/2

0 1/2 1/2
0 −1/2 1/2


=

 1 1/2− 1/2 −1/2 + 1/2
0 1/2 + 1/2 1/2− 1/2
0 1/2− 1/2 1/2 + 1/2


=

 1 0 0
0 1 0
0 0 1


Elementary Matrices. The purpose of elementary matrices is to
express toolkit operations of swap, combination and multiply in terms
of matrix multiply.

Typically, toolkit operations produce a finite sequence of k linear alge-
braic equations, the first is the original system and the last is the reduced
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row echelon form of the system. We are going to re-write a typical toolkit
sequence as matrix multiply equations. Each step is obtained from the
previous by left-multiplication by a square matrix E:

A ~X = ~b Original system

E1A ~X = E1
~b After one toolkit step

E2E1A ~X = E2E1
~b After two toolkit steps

E3E2E1A ~X = E3E2E1
~b After three toolkit steps

(5)

Definition 5 (Elementary Matrix)
An elementary matrix E is created from the identity matrix by applying
a single toolkit operation, that is, exactly one of the operations combi-
nation, multiply or swap.

Elementary Combination Matrix. Create square matrix E by apply-
ing combo(s,t,c) to the identity matrix. The result equals the identity
matrix except for the zero in row t and column s which is replaced by c.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 c 1

 Elementary combination matrix,
combo(2,3,c).

Elementary Multiply Matrix. Create square matrix E by applying
mult(t,m) to the identity matrix. The result equals the identity matrix
except the one in row t is replaced by m.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 1 0 0
0 1 0
0 0 m

 Elementary multiply matrix,
mult(3,m).

Elementary Swap Matrix. Create square matrix E by applying
swap(s,t) to the identity matrix.

I =

 1 0 0
0 1 0
0 0 1

 Identity matrix.

E =

 0 0 1
0 1 0
1 0 0

 Elementary swap matrix,
swap(1,3).
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If square matrix E represents a combination, multiply or swap rule, then
the definition of matrix multiply applied to matrix EB gives the same
matrix as obtained by applying the toolkit rule directly to matrix B. The
statement is justified by experiment. See the exercises and Theorem 10.

Typical 3×3 elementary matrices (C=Combination, M=Multiply, S=Swap)
can be displayed in computer algebra system maple as follows.

On Paper Maple with(linalg) Maple with(LinearAlgebra) 1 0 0
0 1 0
0 0 1

 B:=diag(1,1,1); B:=IdentityMatrix(3);

combo(2,3,c) C:=addrow(B,2,3,c); C:=RowOperation(B,[3,2],c);

mult(3,m) M:=mulrow(B,3,m); M:=RowOperation(B,3,m);

swap(1,3) S:=swaprow(B,1,3); S:=RowOperation(B,[3,1]);

The reader is encouraged to write out several examples of elementary
matrices by hand or machine. Such experiments lead to the following
observations and theorems, proofs delayed to the section end.

Constructing an Elementary Matrix E.

Combination Change a zero in the identity matrix to symbol c.

Multiply Change a one in the identity matrix to symbol m 6= 0.

Swap Interchange two rows of the identity matrix.

Constructing E−1 from an Elementary Matrix E.

Combination Change multiplier c in E to −c.
Multiply Change diagonal multiplier m 6= 0 in E to 1/m.

Swap The inverse of E is E itself.

Theorem 10 (Matrix Multiply by an Elementary Matrix)
Let B1 be a given matrix of row dimension n. Select a toolkit operation
combination, multiply or swap, then apply it to matrix B1 to obtain matrix
B2. Apply the identical toolkit operation to the n× n identity I to obtain
elementary matrix E. Then

B2 = EB1.

Theorem 11 (Toolkit Sequence Identity)
If C and D are any two frames in a toolkit sequence, then corresponding
toolkit operations are represented by square elementary matrices E1, E2,
. . . , Ek and the two frames C,D satisfy the matrix multiply equation

D = Ek · · ·E2E1C.
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Theorem 12 (The rref and Elementary Matrices)
Let A be a given matrix of row dimension n. Then there exist n × n
elementary matrices E1, E2, . . . , Ek representing certain toolkit operations
such that

rref(A) = Ek · · ·E2E1A.

Illustration. Consider the following 6-frame sequence.

A1 =

 1 2 3
2 4 0
3 6 3

 Frame 1, original matrix.

A2 =

 1 2 3
0 0 −6
3 6 3

 Frame 2, combo(1,2,-2).

A3 =

 1 2 3
0 0 1
3 6 3

 Frame 3, mult(2,-1/6).

A4 =

 1 2 3
0 0 1
0 0 −6

 Frame 4, combo(1,3,-3).

A5 =

 1 2 3
0 0 1
0 0 0

 Frame 5, combo(2,3,-6).

A6 =

 1 2 0
0 0 1
0 0 0

 Frame 6, combo(2,1,-3). Found rref .

The corresponding 3× 3 elementary matrices are

E1 =

 1 0 0
−2 1 0

0 0 1

 Frame 2, combo(1,2,-2) applied to I.

E2 =

 1 0 0
0 −1/6 0
0 0 1

 Frame 3, mult(2,-1/6) applied to I.

E3 =

 1 0 0
0 1 0
−3 0 1

 Frame 4, combo(1,3,-3) applied to I.

E4 =

 1 0 0
0 1 0
0 −6 1

 Frame 5, combo(2,3,-6) applied to I.
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E5 =

 1 −3 0
0 1 0
0 0 1

 Frame 6, combo(2,1,-3) applied to I.

Because each frame of the toolkit sequence has the succinct form EB,
where E is an elementary matrix and B is the previous frame, the com-
plete toolkit sequence can be written as follows.

A2 = E1A1 Frame 2, E1 equals combo(1,2,-2) on I.

A3 = E2A2 Frame 3, E2 equals mult(2,-1/6) on I.

A4 = E3A3 Frame 4, E3 equals combo(1,3,-3) on I.

A5 = E4A4 Frame 5, E4 equals combo(2,3,-6) on I.

A6 = E5A5 Frame 6, E5 equals combo(2,1,-3) on I.

A6 = E5E4E3E2E1A1 Summary, frames 1-6. This relation is
rref(A1) = E5E4E3E2E1A1, which is the
result of Theorem 12.

The summary is the equation

rref(A1) =

1−3 0
0 1 0
0 0 1


1 0 0

0 1 0
0−6 1


 1 0 0

0 1 0
−3 0 1


1 0 0

0−1
6 0

0 0 1


 1 0 0
−2 1 0

0 0 1

A1

The inverse relationship A1 = E−1
1 E−1

2 E−1
3 E−1

4 E−1
5 rref(A1) is formed

by the rules for constructing E−1 from elementary matrix E, page 326,
the result being

A1 =

1 0 0
2 1 0
0 0 1


1 0 0

0−6 0
0 0 1


1 0 0

0 1 0
3 0 1


1 0 0

0 1 0
0 6 1


1 3 0

0 1 0
0 0 1

 rref(A1)

Examples and Methods

1 Example (Identify a Reduced Row–Echelon Form) Identify the matri-
ces in reduced row–echelon form using the RREF Test page 318.

A =


0 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =


1 1 3 0
0 0 0 1
0 0 0 0
0 0 0 0



C =


2 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 D =


0 1 3 0
0 0 0 1
1 0 0 0
0 0 0 0


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Solution:

Matrix A. There are two nonzero rows, each with a leading one. The pivot
columns are 2, 4 and they are consecutive initial columns of the 4× 4 identity
matrix. Yes, it is a RREF.

Matrix B. Same as A but with pivot columns 1, 4. Yes, it is a RREF. Column
2 is not a pivot column. The example shows that a scan for columns of the
identity is not enough: you must skip over non-pivot columns.

Matrix C. Immediately not a RREF, because the leading nonzero entry in
row 1 is not a one.

Matrix D. Not a RREF. Swap row 3 twice to bring it to row 1. Then it will
be a RREF. This example has pivots in columns 1, 4. But columns 1, 4 fail to
be the first two initial columns of the 4× 4 identity matrix.

Visual RREF Test. More experience is needed to use the visual test for
RREF, but it is worth the effort. Details are very brief. The ability to use the
visual test is learned by working examples that use the basic RREF test.

Leading ones are boxed:

A =


0 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0

 B =


1 1 3 0

0 0 0 1
0 0 0 0
0 0 0 0



C =


2 1 1 0

0 0 0 1
0 0 0 0
0 0 0 0

 D =


0 1 3 0

0 0 0 1

1 0 0 0
0 0 0 0


Matrices A,B pass the visual test. Matrices C,D fail the test. Visually, we look
for a boxed one starting on row 1. Boxes occupy consecutive rows, marching
down and right, to make a triangular diagram.

2 Example (Reduced Row–Echelon Form) Find the reduced row–echelon
form of the coefficient matrix A using the elimination method, page 319.
Then solve the system.

x1 + 2x2 − x3 + x4 = 0,
x1 + 3x2 − x3 + 2x4 = 0,

x2 + x4 = 0.

Solution: The coefficient matrix A and its rref are given by (details below)

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 , rref(A) =

 1 0 −1 −1
0 1 0 1
0 0 0 0

 .

Using variable list x1, x2, x2, x4, the equivalent reduced echelon system is

x1 − x3 − x4 = 0,
x2 + x4 = 0,

0 = 0.
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which has lead variables x1, x2 and free variables x3, x4.

The last frame algorithm applies to write the standard general solution. This
algorithm assigns invented symbols t1, t2 to the free variables, then back-
substitution is applied to the lead variables. The solution to the system is

x1 = t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2, −∞ < t1, t2 <∞.

Details of the Elimination Method. 1∗ 2 −1 1
1 3 −1 2
0 1 0 1

 The coefficient matrix A. Leading one identi-
fied and marked as 1∗. 1 2 −1 1

0 1∗ 0 1
0 1 0 1

 Apply the combination rule to zero the other
entries in column 1. Mark the row processed.
Identify the next leading one, marked 1∗. 1 0 −1 −1

0 1 0 1
0 0 0 0

 Apply the combination rule to zero the other
entries in column 2. Mark the row processed.
The matrix passes the Visual RREF Test.

3 Example (Back-Substitution) Display a toolkit sequence which uses nu-
merical efficiency ideas of back substitution, page 322, in order to find the
RREF of the matrix

A =

 1 2 −1 1
1 3 −1 2
0 1 0 1

 ,
Solution: The answer for the reduced row-echelon form of matrix A is

rref(A) =

 1 0 −1 0
0 1 0 0
0 0 0 1

 .

Back-substitution details appear below.

Meaning of the computation. Finding a RREF is part of solving the ho-
mogeneous system A ~X = ~0. The Last Frame Algorithm is used to write the
general solution. The algorithm requires a toolkit sequence applied to the aug-
mented matrix 〈〈〈A|~0〉〉〉, ending in the Last Frame, which is the RREF with an
added column of zeros. 1 2 −1 1

1 3 −1 2
0 1 0 2

 The given matrix A. Identify row 1 for the first
pivot. 1 2 −1 1

0 1 0 1
0 1 0 2

 combo(1,2,-1) applied to introduce zeros below
the leading one in row 1.
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 1 2 −1 1
0 1 0 1
0 0 0 1

 combo(2,3,-1) applied to introduce zeros below
the leading one in row 2. The RREF has not yet
been found. The matrix is triangular. 1 0 −1 −1

0 1 0 1
0 0 0 1

 Begin back-substitution: combo(2,1,-2) applied
to introduce zeros above the leading one in row 2. 1 0 −1 0

0 1 0 0
0 0 0 1

 Continue back-substitution: combo(3,2,-1) and
combo(3,1,1) applied to introduce zeros above
the leading one in row 3. 1 0 −1 0

0 1 0 0

0 0 0 1

 RREF Visual Test passed.
This matrix is the answer.

4 Example (Answer Check a Matrix Inverse) Display the answer check de-
tails for the given matrix A and its proposed inverse B.

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 , B =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Solution:

Details. We apply the Inverse Test, Theorem 8, which requires one matrix
multiply:

AB =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1




1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 Expect AB = I.

=


1 −3 + 2 + 1 1− 2 + 1 1− 1
0 1 −1 + 1 0
0 0 1 0
0 1− 1 −1 + 1 1

 Multiply.

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Simplify. Then AB = I.
Because of Theorem 8, we
don’t check BA = I.

5 Example (Find the Inverse of a Matrix) Compute the inverse matrix of

A =


1 2 −1 1
0 1 0 1
0 0 0 1
0 1 1 1

 .
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Solution: The answer:

A−1 =


1 −3 1 1
0 1 −1 0
0 −1 0 1
0 0 1 0

 .

Details. Form the augmented matrix C = 〈〈〈A|I〉〉〉 and compute its reduced
row-echelon form by toolkit steps.

1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1

 Augment I onto A.


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 1 1 1 0 0 0 1
0 0 0 1 0 0 1 0

 swap(3,4).


1 2 −1 1 1 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,3,-1). Triangular matrix.


1 2 −1 1 1 0 0 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 Back-substitution: combo(4,2,-1).


1 2 −1 0 1 0 −1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(4,1,-1).


1 0 −1 0 1 −2 1 0
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(2,1,-2).


1 0 −1 0 1 −3 1 1
0 1 0 0 0 1 −1 0
0 0 1 0 0 −1 0 1
0 0 0 1 0 0 1 0

 combo(3,1,1). Identity left, inverse
right.

Details and Proofs

Proof of Theorem 8:

Assume AB = I. Let C = BA − I. We intend to show C = 0, then BA =
C + I = I, as claimed.

Compute AC = ABA − A = AI − A = 0. It follows that the columns ~y of C
are solutions of the homogeneous equation A~y = ~0. To complete the proof, we
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show that the only solution of A~y = ~0 is ~y = ~0, because then C has all zero
columns, which means C is the zero matrix.

First, B~u = ~0 implies ~u = I~u = AB~u = A~0 = ~0, hence B has an inverse, and
then B~x = ~y has a unique solution ~x = B−1~y.

Suppose A~y = ~0. Write ~y = B~x. Then ~x = I~x = AB~x = A~y = ~0. This implies
~y = B~x = B~0 = ~0. The proof is complete.

Proof of Theorem 9:

Details for (a). Let C = 〈〈〈A|I〉〉〉 and assume rref(C) = 〈〈〈I|B〉〉〉. Solving the

n× 2n system C ~X = ~0 is equivalent to solving the system A~Y + I ~Z = ~0 with
n-vector unknowns ~Y and ~Z. This system has exactly the same solutions as
I ~Y +B~Z = ~0, by the equation rref(C) = 〈〈〈I|B〉〉〉. The latter is a reduced echelon

system with lead variables equal to the components of ~Y and free variables
equal to the components of ~Z. Multiplying by A gives A~Y + AB~Z = ~0, hence
−~Z + AB~Z = ~0, or equivalently AB~Z = ~Z for every vector ~Z (because its

components are free variables). Letting ~Z be a column of I shows that AB = I.
Then AB = BA = I by Theorem 8, and B is the inverse of A.

Details for (b). Assume AB = I. We prove the identity rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉.
Let the system A~Y + I ~Z = ~0 have a solution ~Y , ~Z. Multiply by B to obtain
BA~Y + B~Z = ~0. Use BA = I to give ~Y + B~Z = ~0. The latter system
therefore has ~Y , ~Z as a solution. Conversely, a solution ~Y , ~Z of ~Y + B~Z = ~0
is a solution of the system A~Y + I ~Z = ~0, because of multiplication by A.
Therefore, A~Y + I ~Z = ~0 and ~Y +B~Z = ~0 are equivalent systems. The latter is
in reduced row-echelon form, and therefore rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉.
Details for (c). Toolkit steps that compute rref(〈〈〈A|I〉〉〉) also compute rref(A).
Readers learn this fact first by working examples. Elementary matrix formulas
can make the proof more transparent: see the Miscellany exercises. We conclude
that rref(〈〈〈A|I〉〉〉) = 〈〈〈C|B〉〉〉 implies C = rref(A).

We prove C 6= I implies A is not invertible. Suppose not, then C 6= I and
A is invertible. Then (b) implies 〈〈〈C|B〉〉〉 = rref(〈〈〈A|I〉〉〉) = 〈〈〈I|B〉〉〉. Comparing
columns, this equation implies C = I, a contradiction.

To prove C = I implies B is the inverse of A, apply (a).

Details for (d). Assume A is invertible. To be proved: rref(A) = I. Part
(b) says F = 〈〈〈A|I〉〉〉 satisfies rref(F ) = 〈〈〈I|B〉〉〉 where B is the inverse of A. Part
(c) says rref(F ) = rref(A, I) = 〈〈〈C|B〉〉〉 where C = rref(A). Comparing matrix
columns in < C|B >=< I|B > gives rref(A) = C = I.

Converse: assume rref(A) = I, to prove A invertible. Let F = 〈〈〈A|I〉〉〉, then
rref(F ) = 〈〈〈C|B〉〉〉 for some C,B. Part (c) says C = rref(A) = I. Part (a) says
B is the inverse of A. This proves A is invertible and completes (d).

Proof of Theorem 10: It is possible to organize the proof into three cases,
by considering the three possible toolkit operations. We don’t do the tedious
details. Instead, we refer to the Elementary Matrix Multiply exercises page 335,
for suitable experiments that provide the intuition needed to develop formal
proof details.

Proof of Theorem 11: The idea of the proof begins with writing Frame 1
as C1 = E1C, using Theorem 10. Repeat to write Frame 2 as C2 = E2C1 =
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E2E1C. By induction, Frame k is Ck = EkCk−1 = Ek · · ·E2E1C. But Frame
k is matrix D in the sequence. The proof is complete.

Proof of Theorem 12: The reduced row-echelon matrix D = rref(A) paired
with C = A imply by Theorem 11 that rref(A) = D = Ek · · ·E2E1C =
Ek · · ·E2E1A. The proof is complete.

Exercises 5.2

Identify RREF. Mark the matrices
which pass the RREF Test, page 318.
Explain the failures.

1.

 0 1 2 0 1
0 0 0 1 0
0 0 0 0 0



2.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



3.

 1 0 0 0
0 0 1 0
0 1 0 1



4.

 1 1 4 1
0 0 1 0
0 0 0 0


Lead and Free Variables. For each
matrix A, assume a homogeneous sys-
tem A ~X = ~0 with variable list x1, . . . ,
xn. List the lead and free variables.
Then report the rank and nullity of
matrix A.

5.

 0 1 3 0 0
0 0 0 1 0
0 0 0 0 0



6.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



7.

 0 1 3 0
0 0 0 1
0 0 0 0



8.

 1 2 3 0
0 0 0 1
0 0 0 0



9.


1 2 3
0 0 0
0 0 0
0 0 0


10.

 1 1 0
0 0 1
0 0 0


11.

 1 1 3 5 0
0 0 0 0 1
0 0 0 0 0


12.

 1 2 0 3 4
0 0 1 1 1
0 0 0 0 0



13.


0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



14.


0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



15.


0 1 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0



16.


1 0 3 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


Elementary Matrices. Write the 3×3
elementary matrix E and its inverse
E−1 for each of the following opera-
tions, defined on page 317.

17. combo(1,3,-1)

18. combo(2,3,-5)

19. combo(3,2,4)



5.2 Matrix Equations 335

20. combo(2,1,4)

21. combo(1,2,-1)

22. combo(1,2,-e2)

23. mult(1,5)

24. mult(1,-3)

25. mult(2,5)

26. mult(2,-2)

27. mult(3,4)

28. mult(3,5)

29. mult(2,-π)

30. mult(1,e2)

31. swap(1,3)

32. swap(1,2)

33. swap(2,3)

34. swap(2,1)

35. swap(3,2)

36. swap(3,1)

Elementary Matrix Multiply. For
each given matrix B1, perform the
toolkit operation (combo, swap,

mult) to obtain the result B2. Then
compute the elementary matrix E
for the identical toolkit operation.
Finally, verify the matrix multiply
equation B2 = EB1.

37.

(
1 1
0 3

)
, mult(2,1/3).

38.

 1 1 2
0 1 3
0 0 0

, mult(1,3).

39.

 1 1 2
0 1 1
0 0 1

, combo(3,2,-1).

40.

(
1 3
0 1

)
, combo(2,1,-3).

41.

 1 1 2
0 1 3
0 0 1

, swap(2,3).

42.

(
1 3
0 1

)
, swap(1,2).

Inverse Row Operations. Given the
final frame B of a sequence starting
with matrix A, and the given opera-
tions, find matrix A. Do not use ma-
trix multiply.

43. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2), swap(2,3).

44. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,2), swap(3,2).

45. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3).

46. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3), swap(3,2).

Elementary Matrix Products.
Given the first frame B1 of a sequence
and elementary matrix operations
E1, E2, E3, find matrix F = E3E2E1

and B4 = FB1. Hint: Compute
〈〈〈B4|F〉〉〉 from toolkit operations on
〈〈〈B1|I〉〉〉.

47. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3),
mult(1,-2).
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48. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3),
swap(3,2).

49. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), mult(1,4),
swap(1,3).

50. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4),
mult(1,3).

Miscellany.

51. Justify with English sentences
why all possible 2×2 matrices in re-
duced row-echelon form must look
like (

0 0
0 0

)
,

(
1 ∗
0 0

)
,(

0 1
0 0

)
,

(
1 0
0 1

)
,

where ∗ denotes an arbitrary num-
ber.

52. Display all possible 3× 3 matrices
in reduced row-echelon form. Be-
sides the zero matrix and the iden-
tity matrix, please report five other
forms, most containing symbol ∗
representing an arbitrary number.

53. Determine all possible 4×4 matri-
ces in reduced row-echelon form.

54. Display a 6× 6 matrix in reduced
row-echelon form with rank 4 and
only entries of zero and one.

55. Display a 5 × 5 matrix in re-
duced row-echelon form with nul-
lity 2 having entries of zero, one
and two, but no other entries.

56. Display the rank and nullity of any
n× n elementary matrix.

57. Let F = 〈〈〈C|D〉〉〉 and let E be a
square matrix with row dimension
matching F . Display the details for
the equality

EF = 〈〈〈EC|ED〉〉〉.

58. Let F = 〈〈〈C|D〉〉〉 and let E1, E2 be
n× n matrices with n equal to the
row dimension of F . Display the
details for the equality

E2E1F = 〈〈〈E2E1C|E2E1D〉〉〉.

59. Display details explaining why
rref(〈〈〈A|I〉〉〉) equals the matrix
〈〈〈 rref(A)|B〉〉〉, where matrix B =
Ek · · ·E1. Symbols Ei are elemen-
tary matrices in toolkit steps tak-
ing 〈〈〈A|I〉〉〉 into reduced row-echelon
form. Suggestion: Use the preced-
ing exercises.

60. Assume E1, E2 are elementary
matrices in toolkit steps taking
A into reduced row-echelon form.
Prove that A−1 = E2E1. In words,
A−1 is found by doing the same
toolkit steps to the identity matrix.

61. Assume E1, . . . , Ek are elemen-
tary matrices in toolkit steps tak-
ing 〈〈〈A|I〉〉〉 into reduced row-echelon
form. Prove that A−1 = Ek · · ·E1.

62. Assume A,B are 2 × 2 matrices.
Assume rref(〈〈〈A|B〉〉〉) = 〈〈〈I|D〉〉〉. Ex-
plain why the first column ~x of D
is the unique solution of A~x = ~b,
where ~b is the first column of B.

63. Assume A,B are n × n matrices.
Explain how to solve the matrix
equation AX = B for matrix X us-
ing the augmented matrix of A,B.


