Systems of Second Order Differential Equations
Cayley-Hamilton-Ziebur

- Characteristic Equation
- Cayley-Hamilton
 - Cayley-Hamilton Theorem
 - An Example
- Euler’s Substitution for $\ddot{\mathbf{u}} = A\mathbf{u}$
- The Cayley-Hamilton-Ziebur Method for $\ddot{\mathbf{u}} = A\mathbf{u}$
Definition 1 (Characteristic Equation)

Given a square matrix A, the **characteristic equation** of A is the polynomial equation

$$\det(A - \lambda I) = 0.$$

The determinant $\det(A - \lambda I)$ is formed by subtracting λ from the diagonal of A.

The polynomial $p(x) = \det(A - xI)$ is called the **characteristic polynomial** of matrix A.

- If A is 2×2, then $p(x)$ is a quadratic.
- If A is 3×3, then $p(x)$ is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.
Characteristic Equation Examples

Create \(\det(A - xI) \) by subtracting \(x \) from the diagonal of \(A \).
Evaluate by the cofactor rule.

\[
A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}, \quad p(x) = \begin{vmatrix} 2 - x & 3 \\ 0 & 4 - x \end{vmatrix} = (2 - x)(4 - x)
\]

\[
A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{pmatrix}, \quad p(x) = \begin{vmatrix} 2 - x & 3 & 4 \\ 0 & 5 - x & 6 \\ 0 & 0 & 7 - x \end{vmatrix} = (2-x)(5-x)(7-x)
\]
Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

If $p(x) = (-x)^n + a_{n-1}(-x)^{n-1} + \cdots + a_0$, then the result is the equation

$(-A)^n + a_{n-1}(-A)^{n-1} + \cdots + a_1(-A) + a_0I = 0$,

where I is the $n \times n$ identity matrix and 0 is the $n \times n$ zero matrix.

The 2 × 2 Case

Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and for $a_1 = \text{trace}(A)$, $a_0 = \det(A)$ we have $p(x) = x^2 + a_1(-x) + a_0$. The Cayley-Hamilton theorem says

$A^2 + a_1(-A) + a_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
Cayley-Hamilton Example

Assume

\[
A = \begin{pmatrix}
 2 & 3 & 4 \\
 0 & 5 & 6 \\
 0 & 0 & 7
\end{pmatrix}
\]

Then

\[
p(x) = \begin{vmatrix}
 2 - x & 3 & 4 \\
 0 & 5 - x & 6 \\
 0 & 0 & 7 - x
\end{vmatrix} = (2 - x)(5 - x)(7 - x)
\]

and the Cayley-Hamilton Theorem says that

\[
(2I - A)(5I - A)(7I - A) = \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}.
\]
Euler’s Substitution and the Characteristic Equation

Definition. Euler’s Substitution for the second order equation $\vec{u}'' = A\vec{u}$ is

$$\vec{u} = \vec{v}e^{rt}.$$

The symbol r is a real or complex constant and symbol \vec{v} is a constant vector.

Theorem 2 (Euler Solution Equation from Euler’s Substitution)

Euler’s substitution applied to $\vec{u}'' = A\vec{u}$ leads directly to the equation

$$|A - r^2 I| = 0.$$

This is perhaps the premier method for remembering the characteristic equation for the second order vector-matrix equation $\vec{u}'' = A\vec{u}$.

Proof: Substitute $\vec{u} = \vec{v}e^{rt}$ into $\vec{u}'' = A\vec{u}$ to obtain $r^2 e^{rt} \vec{v} = A\vec{v}e^{rt}$. Cancel the exponential, then $r^2 \vec{v} = A\vec{v}$. Re-arrange to the homogeneous system $(A - r^2 I) \vec{v} = \vec{0}$. This homogeneous linear algebraic equation has a nonzero solution \vec{v} if and only if the determinant of coefficients vanishes: $|A - r^2 I| = 0$.
Cayley-Hamilton-Ziebur Method for Second Order Systems

Theorem 3 (Cayley-Hamilton-Ziebur Structure Theorem for $\ddot{\mathbf{u}} = A\dot{\mathbf{u}}$)
The solution $\mathbf{u}(t)$ of second order equation $\ddot{\mathbf{u}}(t) = A\dot{\mathbf{u}}(t)$ is a vector linear combination of Euler solution atoms corresponding to roots of the equation $\det(A - r^2 I) = 0$.

The equation $|A - r^2 I| = 0$ is formed by substitution of $\lambda = r^2$ into the eigenanalysis characteristic equation of A.

In symbols, the structure theorem says

$$\mathbf{u} = \mathbf{d}_1 A_1 + \cdots + \mathbf{d}_k A_k,$$

where A_1, \ldots, A_k are Euler solution atoms corresponding to the roots r of the determining equation $|A - r^2 I| = 0$. Therefore, all vectors in the relation have real entries. However, only $2n$ entries of vectors $\mathbf{d}_1, \ldots, \mathbf{d}_k$ are arbitrary constants, the remaining entries being dependent on them.
Proof of the Cayley-Hamilton-Ziebur Theorem

Consider the case when \(A \) is \(2 \times 2 \) (\(n = 2 \)), because the proof details are similar in higher dimensions. Expand \(|A - xI| = 0\) to find the characteristic equation \(x^2 + cx + d = 0 \), for some constants \(c, d \). The Cayley-Hamilton theorem says that \(A^2 + cA + d \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \). Let \(\vec{u} \) be a solution of \(\vec{u}''(t) = A\vec{u}(t) \). Multiply the Cayley-Hamilton identity by vector \(\vec{u} \) and simplify to obtain

\[
A^2\vec{u} + cA\vec{u} + d\vec{u} = \vec{0}.
\]

Using equation \(\vec{u}''(t) = A\vec{u}(t) \) backwards, we compute \(A^2\vec{u} = A\vec{u}'' = \vec{u}''' \). Replace the terms of the displayed equation to obtain the relation

\[
\vec{u}''' + c\vec{u}'' + d\vec{u} = \vec{0}.
\]

Each component \(y \) of vector \(\vec{u} \) then satisfies the 4th order linear homogeneous equation \(y^{(4)} + cy^{(2)} + dy = 0 \), which has characteristic equation \(r^4 + cr^2 + d = 0 \). This equation is the expansion of determinant equation \(|A - r^2I| = 0\). Therefore \(y \) is a linear combination of the Euler solution atoms found from the roots of this equation. It follows then that \(\vec{u} \) is a vector linear combination of the Euler solution atoms so identified. This completes the proof.