Math 2250-1 Workout Wednesday Super Quiz Tune-Up (Week 4)

Name and uID: \qquad

Write your answer in the space provided. Show work for full credit. You do not need to numerically evaluate all expressions for full credit

1. (10 points) Problem 1

An accelerometer in a smart phone measures an acceleration over $t=0$ to 1 seconds given by the function

$$
a(t)=-t^{3}+1.5 t^{2}-0.5 t
$$

measured in cm per seconds squared. The phone starts from rest $\left(x_{0}=0, v_{0}=0\right)$. Write down and solve the differential equations to find the distance traveled after one second.

Solution: The differential equation for velocity is

$$
\frac{d v}{d t}=a(t)=-t^{3}+1.5 t^{2}-0.5 t
$$

Integrate to find $v(t)$:

$$
v(t)=-0.25 t^{4}+0.5 t^{3}-0.25 t^{2}+C
$$

Plug in $t=1 \mathrm{~s}$:

$$
v(0)=0 \Longrightarrow C=0
$$

The distance it has traveled at the end of the 1 s is calculated by integrating again to find $x(t)$:

$$
x(t)=-0.5 t^{5}+0.125 t^{4}-\frac{0.25}{3} t^{3}+C
$$

where $C=0$, so that the distance traveled is

$$
x(1)=-0.00833333333
$$

2. (10 points) Problem 2

Suppose a 10-liter tank contains 9 liters of water and 1 liter of ethanol at time $t=0$. A 50% concentration solution of water-ethanol is continuously mixed into the tank at a rate $r=2$ liters per minute. The mixed solution is removed from the tank at the same rate. Let $x(t)$ be the volume in liters of ethanol in the tank at time t in minutes. Find $x(t)$ by solving the appropriate differential equation.

Solution: The mixing tank DE is always of the form

$$
\frac{d x}{d t}=r\left(c_{i n}-c_{o u t}\right)
$$

where $r=2, c_{\text {in }}=1 / 2$, and $c_{\text {out }}=x(t) / 10$. Plugging in, we get

$$
\frac{d x}{d t}=2(1 / 2-x(t) / 10)=1-\frac{1}{5} x
$$

Solving the linear first order DE by means of integrating factor $\rho=e^{\frac{1}{5} t}$:

$$
\frac{d}{d t}\left(x e^{\frac{1}{5} t}\right)=e^{\frac{1}{5} t}
$$

Then integrate:

$$
\left.x(t) e^{\frac{1}{5} t}\right)=55^{\frac{1}{5} t}+C
$$

Solve for x :

$$
x(t)=5+C e^{-\frac{1}{5} t}
$$

Initial condition $x(0)=1 / 10$

$$
\frac{1}{10}-5=C
$$

3. (10 points) Problem 3

Consider the differential equation

$$
\frac{d x}{d t}=x^{2}-1
$$

(a) Find the equilibrium solutions.

Solution: The equilibrium solutions are the zeros of the right-hand side. Use the quadratic formula

$$
(x-1)(x+1)=0 \Longrightarrow x= \pm 1
$$

(b) Using a phase portrait, decide whether the equilibrium solutions are asymptotically stable or unstable.

Solution: Find the sign of the derivative

Zeros		-1		+1	
$\frac{d x}{d t}$	++	0	-	0	++
$x(t)$	\nearrow		\searrow		\nearrow

Phase portrait: $\longrightarrow-1 \longleftarrow+1 \longrightarrow$
-1 is asymptotically stable, while +1 is unstable.
(c) Solve the differential equation with $x(0)=0$.

Solution: This is a separable differential equation

$$
\frac{d x}{(x-1)(x+1)}=d t
$$

We use partial fractions.

$$
\begin{array}{r}
\frac{1}{(x-1)(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x+1)} \\
1=A(x+1)+B(x-1) \\
B=-1 / 2, \quad A=1 / 2 \tag{3}
\end{array}
$$

Integrate

$$
\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|=t+C .
$$

Rewrite and take the exponential

$$
\begin{gathered}
\frac{1}{2} \ln \left|\frac{1-x}{x+1}\right|=t+C \quad \Rightarrow \quad\left|\frac{1-x}{x+1}\right|=C e^{2 t} \\
x(0)=0 \quad \Rightarrow \quad C=1 \\
1-x=(x+1) e^{2 t} \quad \Rightarrow \quad x(t)=\frac{1-e^{2 t}}{e^{2 t}+1} \\
x(t)=\frac{-1+e^{-2 t}}{e^{-2 t}+1}
\end{gathered}
$$

