Math 2250 Week 3 Quiz

Name and Unid: SOLUTION \qquad
Write your answer in the space provided. Show work for full credit.

1. (10 points) Solve the first order linear IVP

$$
x y^{\prime}(x)+2 y(x)=4 x^{2} \quad y(1)=2 .
$$

HINT: $b \ln a=\ln a^{b}$.

Solution:

1. Rewrite in the form $y^{\prime}(x)+P(x) y(x)=Q(x)$:

$$
y^{\prime}(x)+\frac{2}{x} y(x)=4 x .
$$

So we have $P(x)=2 / x$ and $Q(x)=4 x$.
2. Find the integrating factor $\rho(x)$:

$$
\rho(x)=e^{\int P(x) d x}=e^{\int \frac{2}{x} d x}=e^{2 \ln |x|}=e^{\ln |x|^{2}}=e^{\ln \left(x^{2}\right)}=x^{2} .
$$

3. Multiply both sides by $\rho(x)$:

$$
x^{2} y^{\prime}(x)+2 x y(x)=4 x^{3} .
$$

4. Recognize that the left-hand side is the derivative of a product:

$$
\frac{d}{d x}(\rho(x) y(x))=\frac{d}{d x}\left(x^{2} y(x)\right)=x^{2} y^{\prime}+2 x y .
$$

5. Integrate both sides:

$$
x^{2} y(x)=\int 4 x^{3} d x=x^{4}+C
$$

Solve for $y(x)$:

$$
y(x)=x^{2}+\frac{C}{x^{2}}
$$

6. Solve the IVP with $y(1)=2$:

$$
2=1+C \Rightarrow C=1
$$

The solution is

$$
y(x)=x^{2}+\frac{1}{x^{2}} .
$$

2. (10 points) Find the partial fraction decomposition of the fraction

$$
\frac{3}{(1-x)(x+2)} .
$$

Solution: We want

$$
\frac{3}{(1-x)(x+2)}=\frac{A}{1-x}+\frac{B}{x+2} .
$$

Factoring the right-hand side we have

$$
\frac{3}{(1-x)(x+2)}=\frac{A}{1-x}+\frac{B}{x+2}=\frac{A(x+2)+B(1-x)}{(1-x)(x+2)} .
$$

The numerators of both fractions have to be the same, thus

$$
3=A(x+2)+B(1-x)=(A-B) x+2 A+B
$$

Since the previous equation has to be true for all x, we find

$$
\left\{\begin{array}{l}
A-B=0 \\
2 A+B=3
\end{array}\right.
$$

The solution to the previous system is $A=B$ and $3 B=3$ that is $A=B=1$. The partial fraction decomposition is

$$
\frac{3}{(1-x)(x+2)}=\frac{1}{1-x}+\frac{1}{x+2} .
$$

Check your answer by combining the fraction again.

Alternatively we can use the formula from class

$$
\frac{1}{(x+a)(x+b)}=\frac{1}{b-a}\left(\frac{1}{x+a}-\frac{1}{x-b}\right) .
$$

Here we have

$$
\frac{3}{(1-x)(x+2)}=-3 \frac{1}{(x-1)(x+2)}
$$

that is $a=-1$ and $b=2$. Plugging into the formula, we find

$$
\frac{3}{(1-x)(x+2)}=-3 \frac{1}{3}\left(\frac{1}{x-1}-\frac{1}{x+2}\right)=\frac{1}{1-x}+\frac{1}{x+2} .
$$

